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Introduction

Previous deep methods are primarily limited to simple scenarios, e.g., a fixed planning type or
a consistent beam angle configuration. This in fact limits the usability of such approaches and
makes them not generalizable over a larger set of clinical scenarios.

We propose a novel conditional generative model, Flexible-C™ GAN, utilizing additional
information regarding planning types and various beam geometries. A shift-dose-volume loss is
proposed to address clinical preference and a miss-consistency loss is introduced to help
conditional GAN training.

Motivation

Two key points need to be addressed for precise dose prediction: individualism and realism.
individualism is required for the plan to be precise specifically in a heterogeneous set of
conditions. Realism makes the subsequent tasks (e.g., fluence map prediction, deliverable
dose) more manageable, as in Fig. 1.

A simple conditional GAN can not satisfy our heterogeneous contexts since we need to handle
(1) multi-level conditions with heterogeneous types and (2) missing conditions that may exist
during training and testing.
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Fig. 1. Overview of a typical
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Fig. 2. Our model Flexible-C™ GAN for 3D dose prediction. CT, PTV/OAR masks, mode,
angle/beam plates, and miss-mask are fed into a U-shape-based Generator (G) to predict
dose maps. The loss functions are described in Methodology.
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Methodology

* Flexible-C™ GAN (FCGAN) Mechanism
Given M conditions {C"}Ii‘il (i.e., C) and their missing indicator m (m! = 0 if i-th
condition is missing, otherwise m* = 1), our adversarial loss becomes:
V(D,G) = Exp,u.llog D(x|C,m)| + E,p () [log(1l — D(G(z|C,m)))],

where G and D are generator and discriminator. To let the model be robust to the
missing condition, we introduce a miss-consistency loss L,,. based on condition
regularization loss L,

Ler = X iso L'(EY(G(2]C,m)), ),

Line = % i miso [E/ (G- [mt = 0,-)) = E/ (G,
where E'(-) extracts feature from the prediction G(-) for the condition C!. L'(-,)
measures the discrepancy between the prediction and the reference corresponding to
C!, and L, reflects how predictions related to observed condition j are consistent
when another condition i is given versus the scenario in which it is missing.
Experiments with face dataset can be found in the paper.

* FCGAN Instantiation for 3D Dose Prediction

Our overall framework for 3D dose prediction is illustrated in Fig. 2. For three-
dimensional conditions (CT, PTV/OARs masks, angle/beam plates), the condition
regularization terms of L. (related E' is Identity) are jointly covered by a
reconstruction loss L, and shift-dose-volume (SDV) loss Lg,,.

The L,.. of N samples is the mean absolute error (MAE) of the reference dose

Y; and its prediction ¥;: L., = % IiV:1||Yl- — 17i||1. We introduce the cross-entropy loss
to instantiate L, for the planning mode condition C™:
1 A A
Les = N IiV:1 _Cim log(p;) — (1 — Clm) log(1 —py).

The proposed Lg4, is derived from DVH definition to close address clinical
preference. Given S ROls masked by {M$} for i-th patient, we have

1 —
Lsay = = X001 Xo=1 ||V O(Y; — ¥;) O M{|| .
The detailed mathematical derlvatlon, properties of L4, can be found in the paper.

Experiment Design

* Our experiments are conducted on heterogeneous lung cancer,
IMRT and VMAT plans.

* Five recently proposed dose prediction baselines are compared.

* Four different evaluation metrics are included to compare models.

* Ablation studies of different components (e.g., the proposed losses) are included.

A demonstration of user intervention inference is included.
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Experiment Results
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Models SDE () DDE({) MAE({) CEL({) Tab. 1. Comparison with
Barragan et al. [7] 7.30 1.95 3.14 2.10 state-of-the-art baselines.
DoseGAN [33] 7.43 1.81 3.33 091 Our model achieves the best
DeepDoseNet [55] 6.26 1.60 3.11 2.07 performance in all four
Wang et al. [58] 6.41 1.58 2.71 1.30 metrics. Best are shown in
Jhanwar et al. [27] 6.78 1.62 3.09 2.02 bold.
FCGAN (ours) 5.80 1.48 2.64 0.05
Models SDE (A) DDE(\L) MAE(i) CFL (i/) Tab. 2. Ablation studies of the
DRUNet 7.01 175 3.12 112 [ropessy ERN mSeuEnm sne
FCGAN(—2) 681 184 o) 0.06 loss functions, which indicate
FCGANCD | 6.10 1.57 271 0.04  €achproposed item makes
FCGAN 5—80 m 2_64 0.05 contribution to the dose

prediction task.

FCGAN(2) has no L, and no L¢g,. FCGANCD has no L.
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e User Intervention Inference to get instant feedback
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