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Introduction
• Previous deep methods are primarily limited to simple scenarios, e.g., a fixed planning type or

a consistent beam angle configuration. This in fact limits the usability of such approaches and
makes them not generalizable over a larger set of clinical scenarios.

• We propose a novel conditional generative model, Flexible-C! GAN, utilizing additional
information regarding planning types and various beam geometries. A shift-dose-volume loss is
proposed to address clinical preference and a miss-consistency loss is introduced to help
conditional GAN training.

Motivation
• Two key points need to be addressed for precise dose prediction: individualism and realism.

individualism is required for the plan to be precise specifically in a heterogeneous set of
conditions. Realism makes the subsequent tasks (e.g., fluence map prediction, deliverable
dose) more manageable, as in Fig. 1.

• A simple conditional GAN can not satisfy our heterogeneous contexts since we need to handle
(1) multi-level conditions with heterogeneous types and (2) missing conditions that may exist
during training and testing.

Fig. 1. Overview of a typical
KBP pipeline. We focus on
3D dose prediction, the
downstream fluence map
prediction is out of scope of
this study.

Dose Prediction Framework

Experiment Results

• User Intervention Inference to get instant feedback

Fig. 2. Our model Flexible-C! GAN for 3D dose prediction. CT, PTV/OAR masks, mode,
angle/beam plates, and miss-mask are fed into a U-shape-based Generator (G) to predict
dose maps. The loss functions are described in Methodology.

Experiment Design
• Our experiments are conducted on heterogeneous lung cancer, including both

IMRT and VMAT plans.
• Five recently proposed dose prediction baselines are compared.
• Four different evaluation metrics are included to compare models.
• Ablation studies of different components (e.g., the proposed losses) are included.
• A demonstration of user intervention inference is included.

Methodology
• Flexible-𝑪𝒎 GAN (FCGAN) Mechanism

Given M conditions 𝑪𝒊 𝒊#𝟏
𝑴

(i.e., 𝑪) and their missing indicator 𝒎 (𝑚& = 0 if i-th
condition is missing, otherwise 𝑚& = 1), our adversarial loss becomes:

𝑉 𝐷, 𝐺 = E'~)!"#" log𝐷 𝑥 𝑪,𝒎 + E*~)$(*)[log(1 − 𝐷(𝐺(𝑧|𝑪,𝒎)))],
where G and D are generator and discriminator. To let the model be robust to the
missing condition, we introduce a miss-consistency loss 𝐿-. based on condition
regularization loss 𝐿./:

𝐿./ = ∑&,-%12𝐿
&(𝐸& 𝐺 𝑧 𝑪,𝒎 ,<),

𝐿-. = ∑34&,-&12 |𝐸
3 𝐺 < 𝑚& = 0,< − 𝐸3(𝐺(<))|,

where 𝐸&(<) extracts feature from the prediction 𝐺(<) for the condition 𝐶&. 𝐿&(<,<)
measures the discrepancy between the prediction and the reference corresponding to
𝐶&, and 𝐿-. reflects how predictions related to observed condition 𝑗 are consistent
when another condition 𝑖 is given versus the scenario in which it is missing.
Experiments with face dataset can be found in the paper.
• FCGAN Instantiation for 3D Dose Prediction

Our overall framework for 3D dose prediction is illustrated in Fig. 2. For three-
dimensional conditions (CT, PTV/OARs masks, angle/beam plates), the condition
regularization terms of 𝐿./ (related 𝐸& is Identity) are jointly covered by a
reconstruction loss 𝐿/5. and shift-dose-volume (SDV) loss 𝐿678.

The 𝐿/5. of N samples is the mean absolute error (MAE) of the reference dose
𝒀& and its prediction A𝒀&: 𝐿/5. =

9
:
∑&#9: 𝒀& − A𝒀& 9. We introduce the cross-entropy loss

to instantiate 𝐿./ for the planning mode condition 𝐶-:

𝐿.;6 =
9
:
∑&#9: −𝐶&- log �̂�& − 1 − 𝐶&- log(1 − �̂�&).

The proposed 𝐿678 is derived from DVH definition to close address clinical
preference. Given S ROIs masked by 𝑴&

6 for i-th patient, we have

𝐿678 =
9
:
∑&#9: ∑6#9< 𝜆6 𝒀&⨀ 𝒀& − A𝒀& ⊙𝑴&

6
9.

The detailed mathematical derivation, properties of 𝐿678 can be found in the paper.

Tab. 1. Comparison with 
state-of-the-art baselines. 
Our model achieves the best 
performance in all four 
metrics. Best are shown in 
bold.

Tab. 2. Ablation studies of the 
proposed GAN mechanism and 
loss functions, which indicate 
each proposed item makes 
contribution to the dose 
prediction task. 

FCGAN(=>) has no 𝐿-. and no 𝐿678. FCGAN(=9) has no 𝐿-..  
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4.2. Dose Prediction for Lung Cancer

We have two datasets for clinical validation: D1WA
(Dataset 1 with angle configuration available) and D2NA
(Dataset 2 with no angle configuration). After quality assur-
ance, D1WA and D2NA have 365 and 793 patients, respec-
tively. Dataset details are in Supplement F. All the exper-
iments are trained in PyTorch 1.11 [51], and the optimizer
is Adam [34] with a weight decay 1e-4. The initial learning
rate is set to 1e-4 and is multiplied by 0.3 at the 200-th and
300-th epochs. The max training epoch is 350. The train,
validation, and test splits for D1WA and D2NA datasets are
256, 30, 70 and 613, 60,120, respectively.

4.2.1 Comparison to Dose Prediction Models

We compare our method with state-of-the-art models (as be-
low) in 3D dose prediction. All the models has been adapted
in lung cancer and for 3D contexts.

Barragan et al. [7] developed a new deep learning ar-
chitecture for dose prediction combining DenseNet [23] and
UNet [52] structures, which was originally proposed to han-
dle heterogeneous beam configuration in IMRT context.

DoseGAN [33] utilize an attention-gated mechanism in
the adversarial training contexts to predict dose map for
prostate cancer patients.

DeepDoseNet [55] is based on ResNet [22] / Dilated
DenseNet structures and with a discrete dose-volume his-
togram loss [45], which achieves a new state-of-the-art in
the 2020 AAPM OpenKBP challenge [6] for head-and-neck
cancer patients with IMRT treatment.

Wang et al. [58] utilized IMRT beam masks for to de-
compose the dose map to sub-fractions, and introduced two
value-based and criteria-based DVH losses [6].

Jhanwar et al. [27] proposed a new moment-based loss
function, which incorporate DVH metrics in a differentiable
manner, to predict 3D dose in IMRT contexts.

The backbone of our FCGAN, termed as Dose ResUNet
(DRUNet), changes the classical CNN layers in UNet [52]
to residual blocks [22]. We add random noise when con-
catenating features from the left path to the right path
while adding multi-conditions when integrated with FC-
GAN mechanism. DRUNet details are in Supplement D.

4.2.2 Evaluation Metrics

We provide four quantitative metrics for comparison. More
discussion of metrics is in Supplement G.

Shift-DV Error (SDE). SDE is derived from our SDV
loss (Definition 1), which shifts the expected errors of DVH
space to voxel space (a holistic view of DVH errors).

Discrete-DVH Error (DDE). DDE measures error be-
tween some discrete values of DVH. Motivated by [6], we
calculate the absolute difference with following: PTV1,

Models SDE (#) DDE(#) MAE(#) CEL(#)
Barragan et al. [7] 7.30 1.95 3.14 2.10

DoseGAN [33] 7.43 1.81 3.33 0.91
DeepDoseNet [55] 6.26 1.60 3.11 2.07

Wang et al. [58] 6.41 1.58 2.71 1.30
Jhanwar et al. [27] 6.78 1.62 3.09 2.02

FCGAN (ours) 5.80 1.48 2.64 0.05

Table 1. Results on D1WA dataset with baselines. The bold and
underline show the best and second best performances.

Models SDE (#) DDE(#) MAE(#) CEL(#)
Barragan et al. [7] 5.99 1.69 1.42 2.56

DoseGAN [33] 6.20 1.70 1.52 0.92
DeepDoseNet [55] 5.13 1.53 1.40 2.63

Wang et al. [58] 5.40 1.50 1.39 2.61
Jhanwar et al. [27] 5.67 1.64 1.43 2.56
FCGAN� (ours) 4.71 1.47 1.49 0.03

Table 2. Results on D2NA dataset with baselines. The bold and
underline show the best and second best performances.

PTV95, PTV99 (doses received by 1%, 95%, 99% of vox-
els in PTV), and OAR

i
mean (the mean dose of i-th OAR).

Mean Absolute Error (MAE). MAE measures the
mean absolute difference of all voxels between the pre-
dicted and the reference dose maps.

To reduce bias from the clinical-dependent dose scale for
different patients and make different metrics for a consistent
range of doses, we linearly normalized dose maps to 0-10
when computing SDE and 0-50 for MAE and DDE.

Cross-Entropy Loss (CEL). CEL is used for evaluating
the planning mode of the predicted dose. It is noteworthy
to mention that the pre-trained model used to compute CEL
uses the same training set as the pre-trained model in Figure
3 (can lead to some overfit). This metric reflects how con-
sistent of planning mode is between predicted and reference
doses to some degree.

4.2.3 Experimental Results

Table 1 shows that our model outperforms all the repre-
sentative baselines on all four metrics on D1WA (with an-
gles). It indicates that our FCGAN mechanism utilizes
multi-condition (e.g., mode, angles) effectively (e.g., SDE
reduces 7.3%, ours vs. the second best [55]).

Table 2 shows our downgraded model (FCGAN�, no an-
gle condition is used in D2NA) has overall superior perfor-
mance (e.g., best SDE, DDE, and CEL). The dose predic-
tion from baselines can be over-fitted to some Gaussian-like
distributions to achieve lower MAE in this heterogeneous
context, as in Figure 7. Although our FCGAN� achieves
higher MAE, it is reasonable due to realistic regularization
and no angle specified. Also, both the predicted and the ref-

Models SDE (#) DDE(#) MAE(#) CEL (#) SDE (#) DDE(#) MAE(#) CEL (#)
test on D2NA, no angle condition test on D1WA

FCGAN (train w/ D1WA) 6.62 2.06 1.91 0.14 5.80 1.48 2.64 0.05
FCGAN� (train w/ D2NA) 4.71 1.47 1.49 0.03 23.30 7.49 5.61 0.13

FCGAN (train w/ D1WA+D2NA) 5.41 1.50 1.54 0.04 5.39 1.39 2.61 0.03

Table 3. Comparison with training combining two datasets. Training or/and testing on D2NA can not use angle condition.

(a) CT/PTV (b) reference (c) ours (d) baseline

Figure 7. Examples show that our model can generate realistic
dose maps, which will help the overall KBP pipeline. The baseline
(DRUNet) predictions overfit to gaussian-like distributions when
the model is trained in this heterogeneous context.

Models SDE (#) DDE(#) MAE(#) CEL (#)
train and inference with only beam-static samples

DRUNet 7.47 1.74 3.65 0.71
FCGAN⇤

6.60 1.62 3.09 0.01

train and inference with only beam-dynamic samples
DRUNet 6.91 1.61 1.73 0.36
FCGAN⇤

5.77 1.31 1.91 0.09

Table 4. Results on D1WA with single mode. FCGAN⇤ denotes
FCGAN only handling single planning mode here.

erence doses can be acceptable due to the subjective nature
of RT. More details are in Supplement G.

Table 3 shows the performance when combining those
two clinical datasets. Due to the large population gap,
model training on one dataset is hard to generalize to an-
other. The performance especially worsens when it is
trained on D2NA and tested on D1WA, because D1WA is
more heterogeneous, and its angle information cannot be
used. Our FCGAN can integrate those two datasets into a
single model even if they have different patient populations
and conditions, which shows overall (or approximately) su-
perior performance than training with a single dataset. Data
specifics and more discussions are in Supplement F.

4.3. Single Mode Models

Our FCGAN is also superior when trained separately on
static-beam and dynamic-beam modes, as in Table 4. In-
terestingly, even for the baseline (DRUNet), the CEL loss
is smaller than training two modes together (as in Table 1).
The downsides of single-mode models are 1) the require-

Models SDE (#) DDE(#) MAE(#) CEL (#)
DRUNet 7.01 1.75 3.12 1.12

FCGAN(�2) 6.81 1.84 2.72 0.06
FCGAN(�1) 6.10 1.57 2.71 0.04

FCGAN 5.80 1.48 2.64 0.05

Table 5. Ablation study of different components. FCGAN(�2) has
no Lsdv and no Lmc. FCGAN(�1) has no Lmc.

ments for more compute resources for two separate mod-
els and 2) potentially limited training samples making deep
learning models underutilized.

4.4. Ablation Studies

In this section, we have ablation studies on Lsdv and
Lmc. More ablations, including data augmentation, differ-
ent physical ranges, and different backbones are shown in
Supplement C and H.

As shown in Table 5, the FCGAN(�2) (using the FC-
GAN mechanism but no Lsdv and no Lmc) utilize the addi-
tional conditions effectively with smaller errors, e.g., MAE
reduces 13% (from 3.12 to 2.72). Furthermore, Lsdv and
Lmc bring improvements separately, e.g., SDE reduces 10%
(from 6.81 to 6.10) by adding Lsdv and further reduces 5%
(from 6.10 to 5.80) by adding Lmc.

4.5. User Intervention Inference

Our model allows users to flexibly change planning
mode and angle configurations and instantly make addi-
tional inferences of 3D dose map. As in Figure 8, our pre-
diction is close to the reference when the mode/angle con-
ditions are the same as the reference. Further, Our model
can have corresponding output by modifying angles and the
mode at inference stage and have reasonable outcomes even
when user leaves one condition (e.g., angles) empty.

5. Discussion and Limitation

3D dose prediction plays a vital role in knowledge-
based planning framework, where it accuracy directly af-
fects the following fluence map prediction [39, 60–62] or
other optimization-based models (e.g., dose mimicking [5]).
Moreover, the predicted 3D dose can be helpful in a con-
ventional optimization-based pipeline, e.g., for plan valida-
tion and for decision support. We proposed a new condi-
tional generative model to predict individualized and real-
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