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Abstract

Deep learning has been utilized in knowledge-based ra-
diotherapy planning in which a system trained with a set
of clinically approved plans is employed to infer a three-
dimensional dose map for a given new patient. However,
previous deep methods are primarily limited to simple sce-
narios, e.g., a fixed planning type or a consistent beam an-
gle configuration. This in fact limits the usability of such
approaches and makes them not generalizable over a larger
set of clinical scenarios. Herein, we propose a novel con-
ditional generative model, Flexible-Cm GAN, utilizing ad-
ditional information regarding planning types and various
beam geometries. A miss-consistency loss is proposed to
deal with the challenge of having a limited set of condi-
tions on the input data, e.g., incomplete training samples.
To address the challenges of including clinical preferences,
we derive a differentiable shift-dose-volume loss to incor-
porate the well-known dose-volume histogram constraints.
During inference, users can flexibly choose a specific plan-
ning type and a set of beam angles to meet the clinical re-
quirements. We conduct experiments on an illustrative face
dataset to show the motivation of Flexible-Cm GAN and fur-
ther validate our model’s potential clinical values with two
radiotherapy datasets. The results demonstrate the supe-
rior performance of the proposed method in a practical het-
erogeneous radiotherapy planning application compared to
existing deep learning-based approaches.

1. Introduction

Radiation therapy (RT) is an essential modality for can-
cer treatment and is applicable to about 50% of patients
[12, 25]. However, many studies demonstrate that millions
of patients currently do not have access to radiotherapy due
to limited infrastructures and trained experts to handle com-
plex planning procedures [15, 20, 59].

RT treatment planning is a process that involves a multi-
disciplinary team (e.g., oncologists, therapists, physicists)
to figure out the treatment beam configurations and intensity
for cancer patients [25]. The modern RT treatments can be
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(a) edge vs. shoe (2D) (b) CT vs. dose (beam-dynamic)

(c) CT vs. dose (beam-static) (d) CT vs. dose (beam-static)

Figure 1. Vanilla image-to-image translation (a) and dose predic-
tion (b)-(d). (a) has a clear shape match between the source and
target domains. (b)-(d) illustrate our challenges, including hetero-
geneous patterns, no clear match between source and target, and
3D data (showing 2D for simplicity) is harder than 2Ds.

divided into two broad categories using static- or dynamic-
beams. The intensity modulated radiotherapy (IMRT) [56]
and volumetric modulated arc therapy (VMAT) [48, 57] are
the most common static- and dynamic- beam types, respec-
tively [10]. IMRT uses several personalized but fixed beam
angles, delivering radiation precisely to the tumor while
sparing the surrounding normal tissues according to the lo-
cation of the tumor and anatomical organs at risk (OARs).
During VMAT, the treatment beam is on while its treatment
head is moving on an arc trajectory [10]. As shown in Fig-
ure 1, the dose maps of static- and dynamic- beam RT plans
can look significantly different, which results from differ-
ent delivery nature energy fluences in those two modes.
Moreover, even using the same planning mode, different
configurations (e.g., beam angles, isocenter) are needed for
different patients due to different tumor locations/shapes,
anatomy structures, and other clinical parameters.

Knowledge-based planning (KBP) aims to use computer
technologies to reduce the time for individualized treatment
plans [6, 43]. Historically, KBP technologies relied on sta-
tistical models or handcrafted features [46, 54]. While pro-
viding promising results, these methods are hard to gener-
alize beyond an inherently targeted limited set of scenar-
ios [33]. Advanced artificial intelligence (e.g., deep learn-
ing [37]) has shown great potential to alter the way oncol-
ogy therapies are administered [25, 53]. An integral part of



KBP methods is to predict the dose distribution that should
be delivered to a patient [6,32,59]. Three-dimensional (3D)
deep learning models have been applied in dose map pre-
diction across different cancers [7, 32, 33, 41, 45, 55] where
the inputs are generally computed tomography (CT) im-
age/volume and masks of organs at risk (OARs) / planning
target volume (PTV). However, the existing automatic dose
prediction models mainly focus on relatively simple scenar-
ios, e.g., single planning mode or/and consistent angle con-
figuration, which significantly limits the model flexibility.

In this paper, we propose a novel conditional generative
model, flexible-multiple-condition GAN, short for Flexible-
Cm GAN or FCGAN, for precise 3D dose prediction in
heterogeneous RT contexts. In addition to the conditions
(CT, PTV/OAR masks) that other methods in literature have
used, we further integrate two conditions: the planning
mode (i.e., static- or dynamic- beam) and the angle config-
uration. Furthermore, we show that our model is robust in
those scenarios where angle configuration may not be avail-
able. Briefly, our contributions include

• We proposed a novel GAN variant, FCGAN, that con-
siders multi-level conditions and handles missing con-
dition values with a new miss-consistency loss.

• We derived a differentiable and spatially-unbiased loss
function from a widely applied dose-volume histogram
and show its effectiveness within the deep learning
training for 3D dose prediction.

• We introduced the deep 3D dose prediction for prac-
tical heterogeneous treatment scenarios (i.e., multi-
type, multi-beam configuration), which enables easy
and fast user-interaction by changing input conditions
and checking results interactively during inference.

• We conducted experiments on two clinical radiother-
apy datasets and a face dataset, validating that our ap-
proach is superior to state-of-the-art deep models.

2. Related Work

RT Dose Planning. There are mainly two branches
of dose prediction models: (1) handcrafted dose-volume
(DV) feature-based and (2) deep learning-based. In the
first branch, the dose-volume statistical models are mainly
based on conventional machine learning or statistics at low-
dimension feature bases [2, 3, 14, 29]. The cumulative
dose-volume frequency distributions [13], simply as dose-
volume histograms (DVHs), have been used for evaluation
in both traditional models and recently deep learning mod-
els [14]. RapidPlanTM is a commercial KBP tool developed
by Varian Medical Systems (Palo-Alto, CA), which is using
DVHs as the feature set, and allows clinical objectives to
be automatically inferred from previous plans [1]. Further-
more, the user is enabled to modify and integrate clinical

objectives into the iterative optimization pipeline to create a
plan for a new patient [1, 16, 35].

Recently, 3D-based image models (especially UNet-
based networks) have been adapted in dose map prediction
for different cancers, such as in prostate [32, 33, 45], head-
and-neck [41, 55, 58], esophageal [4, 64], and lung [7, 27].
Most of them use reconstruction (e.g., L1 or L2) or/and
DVH-based losses to train the 3D dose prediction model
in a single-mode context (e.g., only IMRT). For example,
Kearney et al. [32] apply a fully convolutional neural net-
work to predict the dose map. A cascaded 3D U-Net [41]
has achieved the best performance in a KBP challenge of
IMRT on head-and-neck cancer [6]. Vanilla adversarial
losses [19,26] are used with reconstruction loss to make the
predicted dose more realistic [4, 33, 45]. Soomro et al. [55]
extend [45] with a dilated DenseNet for head-and-neck can-
cer but in a narrow scenario of equidistant static beams.
Conditional GAN and I2I Translation. Generative adver-
sarial nets (GANs) [19] have been successful in generating
realistic images [8,9,21,36]. However, there is no control on
generated samples for vanilla GAN. Conditional GAN [44]
provides a solution to guide the generation by feeding ad-
ditional information, which has been widely explored in
general computer vision such as image-to-image translation
[11, 18, 26, 50, 65], text-to-image generation [49], and im-
age imputation [38, 40]. Conditional GANs have also been
extended to medical imaging addressing specific healthcare
problems with some necessary modifications [63], such as
CT-to-MRI translation [24], disease diagnosis or image seg-
mentation after data imputation [17, 28].

Dose prediction can be formulated broadly as image-
to-image translation (I2I), while it is significantly differ-
ent from the well-known ones, as illustrated in Figure 1.
Simple I2I translation usually shares similar structures be-
tween the source and target domains, e.g., edges to color
image [26, 65] (as in Figure 1a), and MRI to CT [24]. The
source (CT/masks) has a relatively weak connection and no
unique mapping to the target (i.e., dose map) in the practical
heterogeneous contexts (as in Figures 1b, 1c, and 1d).

3. Methodology

3.1. Problem Description and Motivation

In order to obtain precise individualized RT plans, three
types of data are needed: (1) planning mode (static- or
dynamic- beams), (2) beam angle configuration, and (3) flu-
ence map for each beam, which determines the beam shape
and intensity. (1) and (2) are relatively easy to tune in a
human-computer interaction system, while obtaining (3) is
labor-intensive and time-consuming. A typical target of the
KBP pipeline, as in Figure 2, is to obtain the fluence map
for each beam (or subfield), given the planning mode and
beam angle configuration. There are two main steps to ob-
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Figure 2. Overview of a typical KBP pipeline. The teal blocks are
inputs or outputs, the orange blocks are algorithm modules, and
the green ones are the introduced flexible conditions.

tain final fluence maps [5,6,61,62]: (1) dose prediction, and
(2) fluence map prediction when given the predicted dose
map. As the first and essential step, the dose prediction is
the main focus of this paper.

In most dose prediction models via deep learning (e.g,
[4,32,33,45,64]), the inputs (i.e., source) are the computed
tomography (CT) image/volume, the organ at risk (OAR)
masks, and planning target volume (PTV) mask. However,
the dose map (i.e., target) lacks clear structure or texture
information from the source. Furthermore, the reference
dose, used as ground truth during training, is subjective and
can biased as it is designed by a group of expert humans.
It is less challenging if 1) the planning context is simple
such as using the same dose type or/and the same beam an-
gles; 2) the relative locations of PTV and OARs are nearly
consistent for some cancers, such as in prostate cancer and
head-and-neck. However, in clinical practice, specialists
may need to consider which dose types should be delivered
(e.g., beam-static or beam-dynamic) and the suitable set of
beam angles. Tumors in some cancers (e.g., lung cancer,
liver cancer) can vary in a large range of locations within
the host organ, resulting in the relative positions of PTV
and OARs being largely heterogeneous.

We argue that two key points need to be addressed for
precise dose prediction: individualism and realism. individ-
ualism is required for the plan to be precise specifically in
heterogeneous set of conditions. Realism makes the subse-
quent tasks (e.g., fluence map prediction [39, 42, 62], de-
liverable dose [5]) more manageable. GANs have been
specifically useful in generating realistic samples, and their
conditional versions allow additional restrictions and con-
straints which could be beneficial in our task. Conditional
GAN [44] is defined as min-max game of discriminator D
with generator G using following loss:

V (D,G) =Ex⇠pdata [logD(x|y)]+
Ez⇠pz(z)[log(1�D(G(z|y)))],

(1)

where G generates samples based on the condition y and
random noise z. A simple conditional GAN [44] can not
satisfy our use-case as we need to handle (1) multi-level
conditions with heterogeneous types and (2) missing condi-
tions during training and testing.

3.2. Flexible-Cm GAN Mechanism

We describe the general methodology of Flexible-Cm

GAN in this section, and the instantiation for 3D dose pre-
diction is shown in Sec. 3.3. Math symbol explanations of
our model are in Supplement A.

Given M conditions {Ci}Mi=1 (i.e., C) and their missing
indicators m (mi = 0 if i-th condition is missing, otherwise
m

i = 1), our adversarial loss becomes:

V (D,G) =Ex⇠pdata [logD(x|C,m)]+

Ez⇠pz(z)[log(1�D(G(z|C,m)))].
(2)

The i-th missing condition is imputed with default or ran-
dom values (termed as C̄

i). To let the model be robust to
the missing condition, we introduce a miss-consistency loss
Lmc based on condition regularization loss Lcr:

Lcr =
X

i,mi>0

L
i(Ei(G(z|C,m)), ·), (3)

Lmc =
X

j 6=i,mj>0

|Ej(G(·|mi = 0, ·))� E
j(G(·))|. (4)

where E
i(·) extracts feature from the prediction G(·) for

the condition C
i. Li(·, ·) measures the discrepancy between

the prediction and the reference corresponding to C
i, and

Lmc reflects how predictions related to observed condition
j are consistent when another condition i is given versus the
scenario in which it is missing.

3.3. FCGAN Instantiation for 3D Dose Prediction

3.3.1 3D Dose Prediction Framework

Our overall framework for 3D dose prediction is illustrated
in Figure 3. The input includes CT, PTV/OAR masks,
planning mode (beam-static or beam-dynamic), angle/beam
plates, and a condition mask indicating if any condition is
missing. The angle/beam plates computation and detailed
generator G structures are described in Supplement D.

For three-dimensional conditions (CT, PTV/OARs
masks, angle/beam plates), the condition regularization
terms of Eq. 3 (related E

i is Identity) are jointly covered
by a reconstruction loss Lrec and shift-dose-volume (SDV)
loss Lsdv . The Lrec of N samples is the mean absolute er-
ror (MAE) of the reference dose Yi and its prediction Ŷi:

Lrec =
1

N

NX

i=1

||Yi � Ŷi||1. (5)

The details of Lsdv are shown in Sec. 3.3.2.
Inspired by [17, 47] with categorical condition, we in-

troduce the cross-entropy loss (CEL) to instantiate Eq. 3
(related E

i is the pre-trained encoder in Figure 3) for the
planning mode condition C

m:

Lcls =
1

N

NX

i=1

�C
m
i log(p̂i)� (1�C

m
i ) log(1� p̂i). (6)
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Figure 3. Flexible-Cm GAN for 3D dose prediction. CT, PTV/OAR masks, mode, angle/beam plates, and miss-mask are fed into a U-
shape-based Generator (G) to predict dose maps. Note that the condition can be missing, indicated by the missing indicator. Reconstruction
loss (Lrec) and SDV loss (Lsdv) minimize the discrepancy between predicted and reference doses from different perspectives. With a pre-
trianed encoder (E), Lcls regularizes the mode of predicted dose. Lmc enforces prediction consistency of one condition whether another
condition is missing or not, and V is the GAN loss to achieve realistic prediction.

Thus, the total FCGAN loss for 3D dose prediction is:
Ltotal = V + 3Lrec + Lcls + Lsdv + Lmc, (7)

where the adversarial loss V follows Eq. 2, and C includes
three types of condition: (1) CT and PTV/OAR masks,
which are also used by previous methods, e.g., [6, 41, 45],
(2) planning mode, and (3) angle/beam plates. The ratio of
Lrec is set relatively larger to avoid the error is overwhelm
by small/zero dose voxels. The first three items are com-
mon in various conditional GANs [17, 19, 41, 47]. The last
two losses ( Lsdv and Lmc) are our contributions, and we
have a set of ablation studies to validate their effectiveness.

3.3.2 Shift-Dose-Volume Loss

Original DVH [13] is not differentiable (for error back-
propagation) and can be sub-optimal from a spatial view.
Several DVH-based loss functions have been proposed for
dose prediction training [27, 45, 58]. The majority of those
methods are empirically designed based on the computa-
tion of DVH, e.g., approximate Sign function with Sigmoid
function. Differently, we derive a new DVH-based loss
from DVH definition by shifting histogram errors to their
voxel space, which holds a mathematical connection be-
tween the differentiable loss function and original DVH.

Assume the max dose is DT and there are T bins with
unique widths for the DVH. So, the bin width is w = DT

T .
Given a region of interest (ROI, i.e., PTV or OAR) mask M

(as the teal region in Figure 4b), according to DVH defini-
tion: the fractional volume f(Dt) (y-axis) at t-th threshold
Dt (x-axis) is f(Dt) =

P
j 1(Yj�Dt)MjP

j Mj
, where j is voxel

index and t = TDt
DT

is bin index of Dt, as in Figure 4a.
Let us denote voxel indexes of t-th bin as Mt (as the

orange in Figure 4a). To minimize the error from a DVH
perspective, we want errors of each bin to be minimized,
and we shift the error measurement of each bin to the error
of voxels that contribute to the fractional volume f(Dt).

Definition 1. The shift-dose-volume loss L
t
sdv of each

bin [Dt, Dt+
DT
T ) is the absolute error "(·) of all voxels that

contribute to f(Dt) multiply the bin width w, i.e., expected
error of f(Dt) from voxel perspective. The Lsdv of each
ROI is the sum of each bin L

t
sdv , i.e.,

PT
t=1 L

t
sdv .

Given referenced dose Y, we have:

X

j

Mj

TX

t=1

Lt
sdv =

TX

t=1

X

j

1(Yj �Dt) · "(Yj ·Mj) · w

=
TX

t=1

"(Y � (Mt + ...+MT )) · w

=
TX

t=1

t · "(Y �Mt) · w =
TX

t=1

Dt · "(Y �Mt),

(8)

where � is the Hadamard product. When T is large enough
to make every Yj 2 [Dt, Dt +

DT
T ) indexed by Mt is close

to Dt, so lim
T!1

Dt · "(Y �Mt) = 8j2MtYj · "(Y �Mt).
Thus, the SDV loss for a single organ becomes

TX

t=1

Lt
sdv = ||Y � (Y � Ŷ)�M||1. (9)

Generally, given S ROIs masked by {Ms
i} for i-th patient,

we have Lsdv for N patients as:

Lsdv =
1
N

NX

i=1

SX

s=1

�s||Yi � (Yi � Ŷi)�Ms
i ||1, (10)

where �s = 1 if M
s
i mask PTV else �s = 0.5. In sum-

mary, the proposed Lsdv has the following properties (de-
tailed derivation from Eq. 8 to Eq. 10, justification and
math symbol clarification are in Supplement A and E).

Property 1: Higher dose voxels contribute more to both
DVH computation and our SDV loss.

Property 2: Optimal Lsdv leads to an exact match of 3D
dose maps in its ROI, while zero DVH gaps (i.e., optimum)
theoretically can come from sub-optimal spatial mismatch.
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Figure 4. Shifting original (frequency-level) DVH definition to
voxel-level loss. (a) shows a DVH and (b) is its relative volume.
Teal is the ROI mask, the orange is corresponding to t-th bin.

(a) CT (b) PTV (c) angle plt. (d) beam plt. (e) ref. dose

Figure 5. The illustration of beam-static (upper) and beam-
dynamic (lower) samples (3D). The CT and PTV/OAR masks are
source data. Angle-plate and beam-plate are created using our pre-
processing pipeline. The last column is reference dose.

3.3.3 RT Data Pre-processing

We introduce an effective way to utilize RT geometry by
creating spatial matrices (termed as plates). As in Fig-
ure 5, angle plates are binary masks indicating angles (dy-
namic beam plates like sectors due to covering a range of
angles). The beam plates are created based on angles and
PTV masks incorporating commonly-known geometry in-
formation. The details of creating angle/beam plates and
data augmentation are in Supplement B and C.

Considering that closer regions to the isocenter (i.e.,
planning center) are more interesting for the planner, we
centralize the isocenter as the volume center (Figure
5) with two physical ranges in our experiments: 96 mm ⇥
225 mm ⇥ 225 mm and 144 mm ⇥ 256 mm ⇥ 256 mm.
The axial range is smaller since treatment beam pass or-
thogonally to the axial direction. Our major experiments
are conducted with 96 mm ⇥ 224 mm ⇥ 224 mm with
data size 32 ⇥ 192 ⇥ 192. To separate the RT planning
prediction from the clinically-dependent dose prescription,
we normalize the reference dose to 0-5 during the training.
Seven organs at risk (OARs) have been included in the mul-
tiple channel input: brachial, chest wall and rib, esophagus,
heart, proximal bronchial, spinal cord, and lung. We fol-
low [41] to impute zeros for missing organ masks.

(a) M&G (b) no-glass (c) female (d) unknown

Figure 6. Illustration with face images demonstrates our method
can be generalizable. A single generation model can accept mul-
tiple conditions (male and glass) as (a), single condition as in (b)
and (c), and even no condition (d) with desired output.

4. Experiments

To evaluation our proposed model, we provide illustra-
tion examples with the FFHQ dataset [31] and in-depth val-
idations in 3D dose prediction with two clinical datasets.

4.1. Illustration Example with Face Synthesis

We use a state-of-the-art GAN model (vision-aided
mechanism [36] with StyleGAN3 [30]) as the backbone,
which was initially developed for image generation with-
out conditions. We extend the official source code 1 with
our Flexible-Cm GAN mechanism. FFHQ is a representa-
tive face dataset for evaluating GAN [31]. We include two
conditions (wearing glasses and gender) trained on 2,000
128⇥128 images and utilize the public annotation 2.

Figure 6 shows the generated images with a single model
from four different situations: (a) multiple conditions, (b,c)
partial conditions, and (d) no condition. When all condi-
tions are specified, the generated images follow those con-
ditions (e.g., all faces are male and with glasses in Figure
6a). When one or more conditions are missing, the gener-
ated images are with a reasonable diversity in those condi-
tions (e.g., male and female are shown in Figure 6b, 6d).

1https://github.com/nupurkmr9/vision-aided-gan/
tree/main/stylegan3

2https://github.com/DCGM/ffhq-features-dataset



4.2. Dose Prediction for Lung Cancer

We have two datasets for clinical validation: D1WA
(Dataset 1 with angle configuration available) and D2NA
(Dataset 2 with no angle configuration). After quality assur-
ance, D1WA and D2NA have 365 and 793 patients, respec-
tively. Dataset details are in Supplement F. All the exper-
iments are trained in PyTorch 1.11 [51], and the optimizer
is Adam [34] with a weight decay 1e-4. The initial learning
rate is set to 1e-4 and is multiplied by 0.3 at the 200-th and
300-th epochs. The max training epoch is 350. The train,
validation, and test splits for D1WA and D2NA datasets are
256, 30, 70 and 613, 60,120, respectively.

4.2.1 Comparison to Dose Prediction Models

We compare our method with state-of-the-art models (as be-
low) in 3D dose prediction. All the models has been adapted
in lung cancer and for 3D contexts.

Barragan et al. [7] developed a new deep learning ar-
chitecture for dose prediction combining DenseNet [23] and
UNet [52] structures, which was originally proposed to han-
dle heterogeneous beam configuration in IMRT context.

DoseGAN [33] utilize an attention-gated mechanism in
the adversarial training contexts to predict dose map for
prostate cancer patients.

DeepDoseNet [55] is based on ResNet [22] / Dilated
DenseNet structures and with a discrete dose-volume his-
togram loss [45], which achieves a new state-of-the-art in
the 2020 AAPM OpenKBP challenge [6] for head-and-neck
cancer patients with IMRT treatment.

Wang et al. [58] utilized IMRT beam masks for to de-
compose the dose map to sub-fractions, and introduced two
value-based and criteria-based DVH losses [6].

Jhanwar et al. [27] proposed a new moment-based loss
function, which incorporate DVH metrics in a differentiable
manner, to predict 3D dose in IMRT contexts.

The backbone of our FCGAN, termed as Dose ResUNet
(DRUNet), changes the classical CNN layers in UNet [52]
to residual blocks [22]. We add random noise when con-
catenating features from the left path to the right path
while adding multi-conditions when integrated with FC-
GAN mechanism. DRUNet details are in Supplement D.

4.2.2 Evaluation Metrics

We provide four quantitative metrics for comparison. More
discussion of metrics is in Supplement G.

Shift-DV Error (SDE). SDE is derived from our SDV
loss (Definition 1), which shifts the expected errors of DVH
space to voxel space (a holistic view of DVH errors).

Discrete-DVH Error (DDE). DDE measures error be-
tween some discrete values of DVH. Motivated by [6], we
calculate the absolute difference with following: PTV1,

Models SDE (#) DDE(#) MAE(#) CEL(#)
Barragan et al. [7] 7.30 1.95 3.14 2.10

DoseGAN [33] 7.43 1.81 3.33 0.91
DeepDoseNet [55] 6.26 1.60 3.11 2.07

Wang et al. [58] 6.41 1.58 2.71 1.30
Jhanwar et al. [27] 6.78 1.62 3.09 2.02

FCGAN (ours) 5.80 1.48 2.64 0.05

Table 1. Results on D1WA dataset with baselines. The bold and
underline show the best and second best performances.

Models SDE (#) DDE(#) MAE(#) CEL(#)
Barragan et al. [7] 5.99 1.69 1.42 2.56

DoseGAN [33] 6.20 1.70 1.52 0.92
DeepDoseNet [55] 5.13 1.53 1.40 2.63

Wang et al. [58] 5.40 1.50 1.39 2.61
Jhanwar et al. [27] 5.67 1.64 1.43 2.56
FCGAN� (ours) 4.71 1.47 1.49 0.03

Table 2. Results on D2NA dataset with baselines. The bold and
underline show the best and second best performances.

PTV95, PTV99 (doses received by 1%, 95%, 99% of vox-
els in PTV), and OAR

i
mean (the mean dose of i-th OAR).

Mean Absolute Error (MAE). MAE measures the
mean absolute difference of all voxels between the pre-
dicted and the reference dose maps.

To reduce bias from the clinical-dependent dose scale for
different patients and make different metrics for a consistent
range of doses, we linearly normalized dose maps to 0-10
when computing SDE and 0-50 for MAE and DDE.

Cross-Entropy Loss (CEL). CEL is used for evaluating
the planning mode of the predicted dose. It is noteworthy
to mention that the pre-trained model used to compute CEL
uses the same training set as the pre-trained model in Figure
3 (can lead to some overfit). This metric reflects how con-
sistent of planning mode is between predicted and reference
doses to some degree.

4.2.3 Experimental Results

Table 1 shows that our model outperforms all the repre-
sentative baselines on all four metrics on D1WA (with an-
gles). It indicates that our FCGAN mechanism utilizes
multi-condition (e.g., mode, angles) effectively (e.g., SDE
reduces 7.3%, ours vs. the second best [55]).

Table 2 shows our downgraded model (FCGAN�, no an-
gle condition is used in D2NA) has overall superior perfor-
mance (e.g., best SDE, DDE, and CEL). The dose predic-
tion from baselines can be over-fitted to some Gaussian-like
distributions to achieve lower MAE in this heterogeneous
context, as in Figure 7. Although our FCGAN� achieves
higher MAE, it is reasonable due to realistic regularization
and no angle specified. Also, both the predicted and the ref-



Models SDE (#) DDE(#) MAE(#) CEL (#) SDE (#) DDE(#) MAE(#) CEL (#)
test on D2NA, no angle condition test on D1WA

FCGAN (train w/ D1WA) 6.62 2.06 1.91 0.14 5.80 1.48 2.64 0.05
FCGAN� (train w/ D2NA) 4.71 1.47 1.49 0.03 23.30 7.49 5.61 0.13

FCGAN (train w/ D1WA+D2NA) 5.41 1.50 1.54 0.04 5.39 1.39 2.61 0.03

Table 3. Comparison with training combining two datasets. Training or/and testing on D2NA can not use angle condition.

(a) CT/PTV (b) reference (c) ours (d) baseline

Figure 7. Examples show that our model can generate realistic
dose maps, which will help the overall KBP pipeline. The baseline
(DRUNet) predictions overfit to gaussian-like distributions when
the model is trained in this heterogeneous context.

Models SDE (#) DDE(#) MAE(#) CEL (#)
train and inference with only beam-static samples

DRUNet 7.47 1.74 3.65 0.71
FCGAN⇤

6.60 1.62 3.09 0.01

train and inference with only beam-dynamic samples
DRUNet 6.91 1.61 1.73 0.36
FCGAN⇤

5.77 1.31 1.91 0.09

Table 4. Results on D1WA with single mode. FCGAN⇤ denotes
FCGAN only handling single planning mode here.

erence doses can be acceptable due to the subjective nature
of RT. More details are in Supplement G.

Table 3 shows the performance when combining those
two clinical datasets. Due to the large population gap,
model training on one dataset is hard to generalize to an-
other. The performance especially worsens when it is
trained on D2NA and tested on D1WA, because D1WA is
more heterogeneous, and its angle information cannot be
used. Our FCGAN can integrate those two datasets into a
single model even if they have different patient populations
and conditions, which shows overall (or approximately) su-
perior performance than training with a single dataset. Data
specifics and more discussions are in Supplement F.

4.3. Single Mode Models

Our FCGAN is also superior when trained separately on
static-beam and dynamic-beam modes, as in Table 4. In-
terestingly, even for the baseline (DRUNet), the CEL loss
is smaller than training two modes together (as in Table 1).
The downsides of single-mode models are 1) the require-

Models SDE (#) DDE(#) MAE(#) CEL (#)
DRUNet 7.01 1.75 3.12 1.12

FCGAN(�2) 6.81 1.84 2.72 0.06
FCGAN(�1) 6.10 1.57 2.71 0.04

FCGAN 5.80 1.48 2.64 0.05

Table 5. Ablation study of different components. FCGAN(�2) has
no Lsdv and no Lmc. FCGAN(�1) has no Lmc.

ments for more compute resources for two separate mod-
els and 2) potentially limited training samples making deep
learning models underutilized.

4.4. Ablation Studies

In this section, we have ablation studies on Lsdv and
Lmc. More ablations, including data augmentation, differ-
ent physical ranges, and different backbones are shown in
Supplement C and H.

As shown in Table 5, the FCGAN(�2) (using the FC-
GAN mechanism but no Lsdv and no Lmc) utilize the addi-
tional conditions effectively with smaller errors, e.g., MAE
reduces 13% (from 3.12 to 2.72). Furthermore, Lsdv and
Lmc bring improvements separately, e.g., SDE reduces 10%
(from 6.81 to 6.10) by adding Lsdv and further reduces 5%
(from 6.10 to 5.80) by adding Lmc.

4.5. User Intervention Inference

Our model allows users to flexibly change planning
mode and angle configurations and instantly make addi-
tional inferences of 3D dose map. As in Figure 8, our pre-
diction is close to the reference when the mode/angle con-
ditions are the same as the reference. Further, Our model
can have corresponding output by modifying angles and the
mode at inference stage and have reasonable outcomes even
when user leaves one condition (e.g., angles) empty.

5. Discussion and Limitation

3D dose prediction plays a vital role in knowledge-
based planning framework, where it accuracy directly af-
fects the following fluence map prediction [39, 60–62] or
other optimization-based models (e.g., dose mimicking [5]).
Moreover, the predicted 3D dose can be helpful in a con-
ventional optimization-based pipeline, e.g., for plan valida-
tion and for decision support. We proposed a new condi-
tional generative model to predict individualized and real-



beam-dynamic

No Angles
Specified

an
gl

e 
pl

at
e

do
se

 m
ap

m
od

e
beam-static

(a) reference (b) our prediction (c) our prediction with modified conditions

y-axis: fractional volume
x-axis: Dose(Gy)

D
VH

s
beam-static beam-static beam-static

Figure 8. Dose prediction examples allowing user interface. The mode and angle plate are two types of condition that can be modified.
When given the same conditions as reference (a), our prediction (b) has a reasonable match with the delivered dose. (c) shows three
conditional modifications with the desired prediction, even if a condition is missing. The condition modification will be reflected on
predicted dose maps and DVHs. The closer dash line and solid line in DVHs, the better matching between prediction and reference.

istic dose utilizing multi-condition and handle the potential
missing condition in practical heterogeneous contexts. Dur-
ing inference, we allow the users to manipulate conditions
or provide partial conditions to generate 3D dose (Figure
8). This is essential in a RT planning pipeline since the
treatment is subjective to clinicians/experts, and different
institutions may have different preferences. Previous dose
prediction deep models have been explored mainly in a sim-
pler context, e.g., single mode or single beam configuration.
Considering a more practical and challenging context (e.g.,
lung cancer with multiple modes and different angle config-
urations), handling different situations with separate models
is impractical due to implementation complexity. We enable
the usage of additional geometry information and human-
machine interaction with a single model.
Limitations and Future Work. Currently, our model has
only been tested on lung cancer datasets. Lung cancer is
one of the most heterogeneous compared to widely studied
cancers (e.g., prostate) with RT planning. We have shown
that our model is promising in this challenging context and
will yet to show how it generalizes to other cancer sites in
the near future. Second, although we use pretraining mech-
anism [36] (a state-of-the-art GAN) for the face dataset, the
exact same approach is not applicable in 3D dose contexts

due to a shortage of external pretrained 3D dose model and
memory constraints. For future work, we will explore other
techniques, for example utilizing self-supervised learning,
to obtain appropriate pretrained models and to boost perfor-
mance. Third, another future work is to build an entire deep
learning RT planning pipeline (adding fluence map predic-
tion as in Figure 2 and other necessary parts).
Conclusion. We proposed a new GAN variant Flexible-Cm

GAN with two novel loss functions motivated by the prac-
tical challenges in RT dose planning. We are the first to
advance the precision of 3D dose prediction by adding flex-
ible conditions such as beam geometry and treatment mode
within a deep learning framework. Our miss-consistency
loss upgrades our model to be able to handle flexible con-
ditions. Shift-dose-volume loss makes widely used DVH
metric differentiable and allows us to use it in a deep learn-
ing context reducing the possibility of sub-optimal solu-
tions. We conducted extensive experiments on two clinical
datasets to validate our model and its sub-components. We
also demonstrated that Flexible-Cm GAN is generalizable
to other tasks (e.g., face synthesis).
Disclaimer. The information in this paper is based on re-
search results that are not commercially available. Future
commercial availability cannot be guaranteed.
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