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a b s t r a c t 

The Long Short-Term Memory (LSTM) network is widely used in modeling sequential observations in 

fields ranging from natural language processing to medical imaging. The LSTM has shown promise for 

interpreting computed tomography (CT) in lung screening protocols. Yet, traditional image-based LSTM 

models ignore interval differences, while recently proposed interval-modeled LSTM variants are limited 

in their ability to interpret temporal proximity. Meanwhile, clinical imaging acquisition may be irregu- 

larly sampled, and such sampling patterns may be commingled with clinical usages. In this paper, we 

propose the Distanced L STM (DL STM) by introducing time-distanced (i.e., time distance to the last scan) 

gates with a temporal emphasis model (TEM) targeting at lung cancer diagnosis (i.e., evaluating the ma- 

lignancy of pulmonary nodules) . Briefly, (1) the time distance of every scan to the last scan is modeled 

explicitly, (2) time-distanced input and forget gates in DLSTM are introduced across regular and irreg- 

ular sampling sequences, and (3) the newer scan in serial data is emphasized by the TEM. The DLSTM 

algorithm is evaluated with both simulated data and real CT images (from 1794 National Lung Screening 

Trial (NLST) patients with longitudinal scans and 1420 clinical studied patients). Experimental results on 

simulated data indicate the DLSTM can capture families of temporal relationships that cannot be detected 

with traditional LSTM. Cross-validation on empirical CT datasets demonstrates that DLSTM achieves lead- 

ing performance on both regularly and irregularly sampled data (e.g., improving LSTM from 0.6785 to 

0.7085 on F1 score in NLST). In external-validation on irregularly acquired data, the benchmarks achieved 

0.8350 (CNN feature) and 0.8380 (with LSTM) on AUC score, while the proposed DLSTM achieves 0.8905. 

In conclusion, the DLSTM approach is shown to be compatible with families of linear, quadratic, expo- 

nential, and log-exponential temporal models. The DLSTM can be readily extended with other temporal 

dependence interactions while hardly increasing overall model complexity. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Lung cancer was estimated as the most common cancer of

eath in the United States of 2019 ( Siegel et al., 2019 ), and early

iagnosis and timely treatment with low-dose computed tomo-

raphic (CT) can reduce mortality by over 20% ( Aberle et al.,

011 ). With large data archives and advanced computing resources,

eep-learning-based methods have become prevalent techniques

n medical image analysis (MIA). Lung cancer diagnosis, as a subset

f MIA, has been explored with deep learning methods ( Liao et al.,

019 ; Ardila et al., 2019 ; van Ginneken et al., 2010 ). From a ma-
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hine learning perspective, the ultimate objective of the lung can-

er diagnosis is to estimate if a patient has lung cancer or not. 

The leading automatic lung cancer diagnosis pipeline usually

ncludes two steps: detecting the suspicious pulmonary nodules

nd analyzing their malignancy. Zhu et al. (2018a) introduced the

aster RCNN with 3D dual-path blocks to learn nodule features.

eepSEED ( Li et al., 2019 ) developed a 3D CNN with an encoder-

ecoder structure for detecting nodules and extensively evalu-

ted on public datasets. Beyond the nodule-based analysis, re-

earchers have explored the lung cancer diagnosis on scan-level

r patient-level. Liao et al. (2019) developed a 3D deep leaky

oise-or network, which included nodule detection and classify-

ng the whole lung. Ardila et al. (2019) utilized the current and

rior CT images as multi-channel input to predict the risk of

https://doi.org/10.1016/j.media.2020.101785
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101785&domain=pdf
mailto:riqiang.gao@vanderbilt.edu
https://doi.org/10.1016/j.media.2020.101785
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Fig. 1. Challenging examples for conventional LSTM. One high-risk region per image is enlarged. The upper CT images are from a cancer-free patient, where the clear changes 

can be seen in nodule over 2 years. The lower CT images come from a cancer patient, where a clear difference is hard to be visualized within a short time interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

a  

i  

o  

i  

m  

v  

S  

g  

(  

a  

g  

d  

(  

n  

H  

t  

T  

h  

h  

t

 

f  

f  

T  

t  

T  

s

 

t  

t  

n  

D  

t  

h  

f  

s  

(  
lung cancer. Wang et al. (2019) collaboratively used the CT images

and clinical demographics for patient-level lung cancer diagnosis.

Gao et al. (2020b) developed a multi-task network for prediction

of lung cancer and cancer-free progression. In this paper, our al-

gorithm employ the ( Liao et al., 2019 ) as the feature extraction

method, which won the first place in the Kaggle DSB2017 chal-

lenge ( https://www.kaggle.com/c/data- science- bowl- 2017 ). A limi-

tation of this previous work ( Liao et al., 2019 ) is that the network

focuses on single CT scan for each patient and does not take ad-

vantage of multiple longitudinal CT scans. 

Longitudinal lung screening CT scans contain temporal rele-

vant diagnostic information for lung cancer, and its effectiveness

has been explored (e.g., Ardila et al. (2019) , Xu et al. (2019) ). As

lung screening is becoming more common, longitudinal lung CT

scans are also becoming readily available for decision making in

clinical practice. The guidelines for lung screening indicate annual

imaging for high-risk patients ( https://medlineplus.gov/lungcancer.

html ). However, in general practice, clinical screening is rarely pre-

cisely annual since patients may miss visits or may have less fre-

quent scans due to competing factors. Additionally, if clinical con-

cerns arise, more frequent scans may be possible. In our exper-

iments, longitudinal CT scans are modeled as irregularly sampled,

which indicates the time interval between CT scans varies substan-

tially. As the example shown in Fig. 1 , a benign nodule can exhibit

substantial variations if the time interval is large, while the ma-

lignant nodule may vary little within a short time. Hence, careful

consideration of the time interval is necessary to provide the con-

text of the different signal between scans. This confounding factor

challenges most of learning models (including canonical sequential

models) that do not consider the precise timing of scans. 

Recurrent Neural Networks (RNNs) are leading methods to ap-

ply deep learning to longitudinal data (e.g., natural language pro-

cessing ( Wen et al., 2015 ), speech recognition ( Han et al., 2017 ),

computer vision ( Finn et al., 2006 ; Lotter et al., 2016 ), and medical

imaging ( Xu et al., 2019 ; Santeramo et al., 2018 ; Gao et al., 2020a ).

Some works ( Gregor et al., 2015 ; Chung et al., 2015 ; Bayer and

Osendorfer, 2014 ) collaborated the RNNs with generative models.

The Long Short-Term Memory (LSTM) ( Hochreiter and Schmidhu-
er, 1997 ) network is a RNN approach that captures both long-term

nd short-term dependencies within sequential data by introduc-

ng the cell state and three gates (i.e., input gate, forget gate and

utput gate). The LSTM has been widely applied to multiple fields

ncluding temporal action recognition ( Zhu et al., 2016 ) and pul-

onary nodule detection with 3D CNN ( Zhu et al., 2018b ). Many

ariants of LSTM have been proposed. Peephole LSTM ( Gers and

chmidhuber, 20 0 0 ) adds a “peephole connection” that allows the

ate layers have wider receptive field. The Gated Recurrent Unit

 Cho et al., 2014 ) combined the input gates and forget gates as

 single “gate”. Phased LSTM ( Neil et al., 2016 ) included a new

ate with three different phases to address event-based sequential

ata. Recently, the temporal intervals have been modeled in LSTM

e.g., recommendation system in finance ( Zhu et al., 2017 ) and ab-

ormality detection with 2D chest X-ray ( Santeramo et al., 2018 )).

owever, no previous studies have been conducted to model global

emporal variations and emphases to the best of our knowledge.

he previous methods ( Santeramo et al., 2018 ; Zhu et al., 2017 )

ave modeled the relative intervals between consecutive scans,

owever, these methods did not include the global time informa-

ion. 

In this paper, the Distanced L STM (DL STM) is proposed to per-

orm lung cancer diagnosis using the longitudinal imaging features

rom lung CT scans. The novelty of this approach arises from a new

emporal Emphasis Model (TEM) to capture the global time dis-

ance from the previous time stamp scan to the last time point.

he TEM is aggregated with forget gate and input gate to empha-

ize more recent scans. 

Experiments on simulated data and CT datasets are included

o evaluate our method. First, the toy dataset is simulated and

ermed as Tumor-CIFAR , which is generated by adding dummy

odules to CIFAR10 ( Krizhevsky and Hinton, 2009 ) according to

uhaylongsod et al. (1995) that the malignant nodules grow ~3

imes faster than benign ones. The performance on Tumor-CIFAR

ighly supports that our DLSTM can capture the time stamp in-

ormation in sequences. Second, we include three empirical lung

creening CT scan datasets (the National Lung Screening Trial

NLST) ( N.L.S.T.R.T.J., 2011 ), the Vanderbilt Lung Screening Program

https://www.kaggle.com/c/data-science-bowl-2017
https://medlineplus.gov/lungcancer.html
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Fig. 2. The framework of DLSTM (three “steps” in the example). The pre-operation can be image preprocessing or a feature extraction network. x t is the input data at time 

point t , and d t is the time distance from the time point t to the latest time point. “F ” represents the learnable DLSTM component (convolutional version in this paper). H t 
and C t are the hidden state and cell state, respectively. The input data, x t , could be 1D, 2D, or 3D. The last step’s output (e.g., H t+1 ) is the output of DLSTM. 
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VLSP) ( https://www.vumc.org/radiology/lung ) and the Molecular

haracterization Laboratories (MCL) ( https://mcl.nci.nih.gov )) in-

luding regular and irregular sampled scans. The MCL and VLSP

re combined as our in-house dataset. 

This paper is the extension of the conference version ( Gao et al.,

019 ). Specifically, we (1) generalize and evaluate the DLSTM

 Gao et al., 2019 ) with four temporal emphasis models and (2) in-

lude more comprehensive baseline methods and deeper analyses.

n summary, the contributions of this manuscript are: 

(1) The proposed DLSTM models the global temporal variations

and emphasizes newer scan. 

(2) The TEM model is proposed to encode temporal information

with the forget gate and input gate in LSTM families. 

(3) The evaluations of simulated datasets and three empirical

datasets (including cross-validation and external-validation) 

are provided. 

. Theory 

.1. Task description and intuition 

Given a set of patients P = { p 1 , p 2 , . . . , p n } with longitudinal

T scans, the aim of the network is to predict a label for each pa-

ient to indicate whether the patient has cancer or not. For simpli-

cation, the following definitions are provided. Each patient p i has

 + 1 longitudinal scans with data features { X 0 , . . . , X m 

} from scan

cquisition times { T 0 , . . . , T m 

} . The time intervals between scans

 l 0 , . . . , l m −1 } are computed by l t = T t+1 − T t . The time interval to

ast scan { d 0 , . . . , d m 

} is computed by d t = max { T } − T t . In this sce-

ario design, d m 

= 0 . 

The motivating idea is to model longitudinal data in the con-

ext of LSTM. While long term patterns are often of high impor-

ance in natural longitudinal learning (e.g., on natural language,

oice, videos), we observe that recent scans may detect an event

n onset in medical imaging. Two concerns should be addressed

or the longitudinal CT scans for diagnosis (1) newer data usually

ring more information for diagnosis and (2) timestamp interval

nformation should be included (as shown in Fig. 1 ). Therefore, the

ime distances of scans are introduced as { d t }, which allow em-

hasis on the more recent data and also encode the time interval

nformation, in the proposed method (as shown in Fig. 2 ). 
.2. Convolutional LSTM 

Convolutional LSTM ( Shi et al., 2015 ) was proposed to in-

egrate LSTM with computer vision tasks ( Finn et al., 2006 ;

otter et al., 2016 ; Cai et al., 2017 ). The example of convolutional

STM ( Shi et al., 2015 ) is used to introduce the core ideas of LSTM

amily. The LSTM includes three gates (i.e., forget gate, input gate

nd output gate) and two state units (hidden state and cell state).

he whole convolutional LSTM model is provided as: 

 t = σ ( W xi ∗x t + W hi ∗h t−1 + W ci ◦ C t−1 + b i ) (1) 

f t = σ
(
W x f ∗x t + W h f ∗h t−1 + W c f ◦ C t−1 + b f 

)
(2) 

 t = f t ◦ C t−1 + i t ◦ tanh 

(
W x f ∗x t + W h f ∗h t−1 + b f 

)
(3) 

 t = σ ( W xo ∗x t + W ho ∗h t−1 + W co ◦ C t + b o ) (4) 

 t = o t ◦ tanh ( C t ) (5) 

The input gate i t controls information updated, and the forget

ate controls the information from cell state for next iteration. The

utput is based on the cell state filtered by an output gate o t . The

ell state keeps the long-term dependency, and the hidden state

 t contributes to next step for computing gates and cell state. The

eight W and the bias b are the learnable parameters. x t is the

nput at the time point t . The “∗” and “◦” denote the convolution

perator and Hadamard product, respectively. The “σ ” is the sig-

oid function to normalize the gates (i.e., i t , f t and o t ) to the range

f (0,1). The “tanh ” represents hyperbolic tangent, which has the

ange ( −1, 1). 

Zhu et al. (2017) proposed the Time-LSTM, which added a time-

nterval based gate to LSTM with better modeling user behavior in

 recommender system. Santeramo et al. (2018) included an addi-

ive term with time interval information in LSTM equations, which

as proposed for abnormalities detection of chest X-ray. We em-

loy ( Zhu et al., 2017 ; Santeramo et al., 2018 ) as the benchmark

ethods in this study since those are the most representative time

odulated algorithms. Note that for clarity in the remainder of this

anuscript, LSTM implicitly refers to convolutional LSTM. 

https://www.vumc.org/radiology/lung
https://mcl.nci.nih.gov
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2.3. Distanced LSTM 

LSTM family is the most widely used RNNs in classifica-

tion/prediction with sequential data. The input gate i t and forget

gate f t are designed to control the information to be stored and for-

gotten at step T t and before step T t , respectively. In classical LSTM,

the time points are treated as uniform distribution without mod-

eling the time intervals. 

Herein, a focusing term is introduced into the DLSTM method

by proposing a Temporal Emphasis Model (TEM). The TEM en-

codes the time distance d t with a parameter learnable mathemat-

ical function. In this paper, four different variations of the DLSTM

are introduced as: 

D 1 ( d t , a, c ) = a · e −c·d t (6)

D 2 ( d t , a, c ) = a · max { 1 − c · d t , ε } (7)

D 3 ( d t , a, c ) = a · max 
{

1 − c · d 2 t , ε 
}

(8)

D 4 ( d t , a, c ) = a · log 
(
1 + e −c·d t ) (9)

where a and c are positive learnable parameters. ɛ is a small posi-

tive value without prior knowledge. D ( d t , a, c ) represents the TEM

in the following. 

The proposed TEM model is multiplied with the input gate and

forget gate in LSTM. Here, we follow the Eqs. (1-5) to form the

DLSTM: 

i t = D ( d t , a, c ) · σ ( W xi ∗X t + W hi ∗H t−1 + W ci ◦ C t−1 + b i ) (10)

f t = D ( d t−1 , a, c ) · σ
(
W x f ∗X t + W h f ∗H t−1 + W c f ◦ C t−1 + b f 

)
(11)

 t = f t ◦ C t−1 + i t ◦ tanh ( W xc ∗X t + W hc ∗H t−1 + b i ) (12)

o t = σ ( W xo ∗X t + W ho ∗H t−1 + W co ◦ C t + b o ) (13)

H t = o t ◦ tanh ( C t ) (14)

Since the input gate handles the current step t , the TEM model

encodes current time distance d t into D ( d t , a, c ) to form the time-

distanced input gate i t . The forget gate multiplies the TEM model

D ( d t−1 , a, c ) at time t − 1 because the forget gate f t addresses the

“previous” information. 

3. Method 

3.1. Simulation: tumor-CIFAR 

First, we examine the asymptotic performance of the temporal

learning models as the datasets become large. Here, simulations

provide both scalability and certain ground truth. 

3.1.1. Dataset 

The public CIFAR10 dataset ( Krizhevsky and Hinton, 2009 ) con-

tains 60,0 0 0 natural images with size of 32 × 32, across ten differ-

ent classes. It is widely used to evaluate methods while requiring

minimal effort s on preprocessing and computing (given the small

image size). In our simulation, each image in CIFAR10 has been ex-

tended to five sequential images with two gradually growing nod-

ules, as shown in Fig. 3 . The nodule size s i is computed by 

s = t × g 
i i 
here t i is the time stamp from the beginning point, g is the

rowth rate, i is the sequential index. The difference between ma-

ignant and benign nodules is the growth rate g . We follow the

nding of ( Duhaylongsod et al., 1995 ), that the growth rate of ma-

ignant pulmonary nodules is approximately three times as the be-

ign one. The growth rate g of simulated nodules is 

 = 

s i 
t i 

∼
{| N ( 3 , 1 . 8 ) | i f malignant 

| N ( 1 , 0 . 2 ) | i f benign 

(15)

here N ( μ, σ 2 ) represents the Gaussian distribution with μ as

ean and σ 2 as variance. Thus, the classification of malignant and

enign nodules is transferred to classification of growth rate g ,

hich is computed by nodule size s i and time information t i .

he simulation code, detail generating descriptions and more im-

ge examples are publicly available at https://github.com/MASILab/

umor-cifar . 

Motivated by Boas and Fleischmann (2012) that Poisson noise is

ne of the prevalent noises in CT imaging, Poisson noise (intensi-

ies of noise map are linearly normalized to 0–10) is added to the

umor-CIFAR. Another implementation of adding salt and pepper

oise can be found in the public GitHub repository. 

We study two applications of the DLSTM model here with two

ersions of the Tumor-CIFAR. 

Regular Sampled (version 1): the image samples have the same

interval distribution” but different nodule “size distribution” be-

ween benign and malignant (bottom left panel of Fig. 3 ). 

Irregular Sampled (version 2): the same nodule “size distribu-

ion” but different “interval distribution” between benign and ma-

ignant (bottom right panel of Fig. 3 ). 

The Regular Sampled version is designed to verify if the em-

hasis on different scans will be helpful for classification when

he time interval is under the same distribution for benign and

alignant (rough regularly sampled). The Irregular Sampled ver-

ion, with extremely irregularly sampled (e.g., the time interval

an differ more than 2 times across subjects) data, measures if our

ethod can capture the time distance difference between the ma-

ignant and benign samples. 

.1.2. Experimental design 

There are 50,0 0 0 training samples and 10,0 0 0 test samples in

umor-CIFAR. Each sample has five sequential images as longitudi-

al data. The simulated malignant prevalence is 50% in both train-

ng and test sets, and the training set is further randomly split into

raining and validation as 4:1. 

The base network structure (CNN in results Fig. 7 ), termed as

ToyNet”, is borrowed from the official example for MNIST of Py-

orch 0.41 ( Paszke et al., 2019 ) . The ToyNet contains two convolu-

ional layers (a 2D dropout after the second) and followed by two

ully connected layers along with a 1D dropout layer in the middle.

he methods “LSTM” and “DLSTM” in Fig. 7 represent the 2D con-

olutional LSTM and 2D convolutional DLSTM stacked in the begin-

ing of the ToyNet, respectively. Training parameters are illustrated

n Table 1 . The initial learning rate is set as 0.01 and is multiplied

y 0.4 at 50th, 70th and 80th epochs. 

.2. Empirical chest CTs 

Three different evaluation settings are conducted on empirical

hest computed tomography (CT) datasets. (1) cross-validation on

ongitudinal national lung screening trial (NLST) datasets (which

re rough regularly sampled), (2) cross-validation on clinical cohort

including cross-sectional and longitudinal, and largely irregularly

ampled data), (3) trained on NLST and test on clinical longitudinal

ata as external-validation. 

https://github.com/MASILab/tumor-cifar
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Fig. 3. Illustration of the Tumor-CIFAR. The upper panel shows the differences between CIFAR10 and Tumor-CIFAR. Each image in CIFAR10 will be transformed into a five-step 

longitudinal sample by adding growing nodules and Poisson noise (the intensities of noise map in the figure are magnified ten times for better visualization). The bottom 

panel show more examples in the two version datasets we simulated (e.g., nodules are added to ‘airplane’). The bottom-left panel is from version 1, which has the same time 

interval distribution, different nodule sizes between benign and malignant. The bottom-right panel is from version 2, which has the same nodule size distribution, different 

time intervals between benign and malignant. the dummy nodules are shown as white blobs (some are indicated by red arrows). 

Table 1 

Training parameters in Tumor-CIFAR and CT datasets. 

Initial Learning Rate Decreased Epochs Decreased Ratio Max Epoch Optimizer Weight Decay 

0.01 [50, 70, 80] 0.4 100 Adam 0 

Table 2 

Demographic distribution in our experiments. 

Lung Data Source NLST MCL VLSP 

Total Subject 1794 567 853 

Longitudinal Subject 1794 105 370 

Cancer Frequency (%) 40.35 68.57 2.31 

Gender (male, %) 59.59 58.92 54.87 
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.2.1. Dataset 

We include three lung screening CT datasets in this paper: Na-

ional Lung Screening Trial (NLST), Molecular Characterization Lab-

ratories (MCL) and Vanderbilt Lung Screening Program (VLSP).

he demographics of each are shown in Table 2 . NLST ( N.L.S.T.R.T.J.,

011 ) is a large-scale randomized controlled trial for early diag-

osis of lung cancer with low-dose CT screening exams. From the

achine learning perspective, NLST is unbalanced since cancer pa-

ients are less frequent than non-cancer patients. We obtain a

ubset (1794 longitudinal subjects) from NLST, termed as “NLST”

n Table 2 , which includes all the longitudinal subjects with the

abel “follow-up confirmed lung cancer” (the ground truth is 1)

nd a random subset of “follow-up confirmed not lung cancer”

ongitudinal scans (the ground truth is 0). The in-house datasets

LSP ( https://www.vumc.org/radiology/lung ) and MCL ( https://mcl.

ci.nih.gov ) are combined as the clinical dataset cohort. These data

re used in the de-identified form under internal review board su-

ervision. 

.2.2. Data preprocessing and nodule detection 

In terms of lung CT datasets, we follow the data preprocess and

odule detection of Liao et al. (2019) . The CT scans are resampled

o 1 × 1 × 1mm 

3 isotropic resolution, and then the scan is seg-

ented by the open source code ( https://github.com/lfz/DSB2017 ).
riefly, the CT images are first converted to Hounsfield Unit (HU)

nd the image volumes are normalized by a window of [ −1200,

00]. The lung masks from Liao et al. (2019) are used to remove

he context outside the lung. The 128 × 128 × 128 volume

atches are put into 3D RPN ( Ren et al., 2017 ) to locate the pul-

onary nodules as ( Liao et al., 2019 ). The top five highest confi-

ence regions are selected, as shown in Fig. 4 , for classifying the

hole scan. 

.2.3. Experimental design 

We follow the image preprocessing and nodule detection

ipeline of Liao et al. (2019) . Our network can be trained end-to-

nd, or considered as a lightweight post-processing component. In

his section, we evaluate the effectiveness of the proposed method

s the post-processing network. 

The pipeline including the CNNs and DLSTM components for

hest CTs is shown in Fig. 5 . The five highest risk regions (possible

odules) for each CT scan are selected by 3D RPN ( Ren et al., 2017 ).

fter feeding into the pre-trained 3DDLNN model of ( Liao et al.,

019 ), each region is modeled as a 1D feature (1 × 64 vector). The

can-level feature is achieved by concatenating region features into

 5 × 64 matrix. 

Fig. 6 presents the experimental design. For a fair compari-

on, the same features are feed to the Multi-channel CNN (MC-

NN), L STM, Time-L STM, tL STM, and DLSTM networks (see Fig. 8 ).

C 

–CNN concatenates multi-scan features in the “channel” dimen-

ion, which is motivated by the strategy in ( Ardila et al., 2019 ).

he LSTM-based methods model the longitudinal data as the se-

uence.Metrics of accuracy, AUC, F1 score, recall, precision are

ompared. McNemar test has performed combining predicting of

ve folds. The training parameters are shown in Table 1 . Since CT

mage data is precious and most lengths of longitudinal steps are

https://www.vumc.org/radiology/lung
https://mcl.nci.nih.gov
https://github.com/lfz/DSB2017
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Fig. 4. Preprocessing and nodule detection. Both steps follow the open-source code of Liao et al. (2019) . Briefly, the preprocessing segments the lung and get rid of the 

background in chest CT, and nodule detection detects five highest risk regions. If the number of detected nodules is less than five, patches of all zeros are added to create 

the five patches. 

Fig. 5. The pipeline for chest CTs. The serial CT images are from the same person at T t−1 and T t . The 3D RPN and 3DDLNN are the CNNs borrowed from Liao et al. (2019) to 

extract scan-level feature. The details of DLSTM and time distance definition d t are illustrated in Fig. 2 and Section 2 . 

Fig. 6. The experimental design of CT images. The 3DDLNN is the network structure from Liao et al. (2019) . Six different methods are compared in our experiments, including 

two newly time-modeled LSTM algorithms (Time-LSTM ( Zhu et al., 2017 ) and tLSTM ( Santeramo et al., 2018 )). Those two integrate the time interval l t in the model, while 

our method introduces the new concept of time distance d t . Please refer to Section 2.1 for the definitions of l t and d t . 
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Table 3 

Experimental results on NLST dataset (%, average (std) of cross-validation). 

Method Accuracy AUC F1 Recall Precision p-value 

Ori CNN 71.94(2.07) 74.18(2.11) 52.18(2.83) 38.07(2.63) 83.24(4.24) < 0.05 

MC –CNN 73.26(3.10) 77.96(0.98) 59.39(3.70) 47.91(4.87) 78.62(3.09) < 0.05 

LSTM 77.05(1.46) 80.84(1.20) 67.85(2.41) 59.92(4.43) 78.68(3.32) < 0.05 

Time-LSTM 77.91(2.18) 81.41(0.45) 69.01(2.85) 61.16(3.71) 79.60(4.68) < 0.05 

tLSTM 77.37(2.97) 80.80(1.45) 67.47(2.46) 58.65(5.12) 79.81(3.34) < 0.05 

DLSTM1 78.96(1.57) 82.55(1.31) 70.85(1.82) 61.61(2.01) 83.38(4.34) ∗(base) 

DLSTM2 78.63(1.45) 81.51(1.11) 68.35(2.03) 57.49(3.87) 84.88(4.56) –

DLSTM3 78.68(1.51) 81.54(0.94) 68.76(1.78) 57.76(3.25) 85.40(4.06) –

DLSTM4 78.05(2.01) 82.09(1.38) 68.90(2.52) 59.84(3.48) 81.44(3.43) –

The average and standard deviation (std) of five-fold test results are reported. 

The best average results are shown in bold . The p < 0.05 indicates our method significantly improve the 

compared method (McNemar test). 
∗ Methods citations: Ori CNN ( Liao et al., 2019 ), LSTM ( Hochreiter and Schmidhuber, 1997 ; Shi et al., 

2015 ), Time-LSTM ( Zhu et al., 2017 ), tLSTM ( Santeramo et al., 2018 ). 
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ess than three, the sequence length in this section is set to two

nd the last two longitudinal scans are selected. 

The “Ori CNN” in Tables 3-5 represents the results obtained by

pen source code and trained model of ( Liao et al., 2019 ). The re-

ults are reported at patient-level rather than scan-level. The “Ori

NN” reports the performance of the last scan for each patient.

riefly, we have the following three experimental settings: 

Cross-validation on NLST longitudinal scans (setting 1). We only

include the patients with longitudinal scans in NLST and

perform cross-validation as shown in Table 3 for 1794 sub-

jects. 

Cross-validation on combining cross-sectional and longitudinal 

scans (setting 2). As shown in the dataset demographic table

( Table 2 ), more than half of the patients only have a single

CT scan (cross-sectional) from the clinical in-house cohort.

We duplicate the cross-sectional scans to the dummy “two

steps” longitudinal scans. For the time information involved

methods (i.e., Time-LSTM, tLSTM, and DLSTM), we set both

the time interval and time distance of dummy longitudinal

scans to zero. 

External-validation on longitudinal scans across data cohorts (set-

ting 3). To test the generalization ability of our model, we

train the model on NLST and test the model on longitudinal

clinical data as external validation. The parameter is tuned

within the NLST dataset, and then directly applied to the

model in longitudinal clinical subjects. Note that the longi-

tudinal data are rough regularly sampled in NLST while the

clinical dataset is largely irregular acquired subjects. , The

NLST dataset is split into five folds (as in setting 1), and the

final predicted cancer probability is the average of five mod-

els trained on five folds of NLST when calculating the five

metrics. 

. Experimental results 

.1. Simulation: tumor-CIFAR 

The classification (benign / malignant) results are shown in

ig.7. From Fig. 7 (1), our DLSTM achieves better results (AUC 0.989)

han the baseline methods CNN (AUC 0.937) and LSTM (AUC 0.958)

n the regularly sampled (version 1) Tumor-CIFAR. Fig. 7 (2) shows

he experimental results on Version 2 Tumor-CIFAR. The irregu-

arly sampled (version 2) Tumor-CIFAR is an extremely irregularly

ampled dataset, whose nodule size distributions are the same be-

ween benign and malignant samples. The DLSTM is extremely

redictive (AUC 0.996), while the algorithms without time infor-

ation (CNN and LSTM) achieve minimal discrimination between

alignant and benign samples. Our method significantly improves
he LSTM and CNN in both version 1 and version 2 ( p < 0.05, Mc-

emar test). 

.2. Empirical chest CTs 

The experimental results of setting 1 are shown in Table 3 .

ur methods achieve the highest performances on all five evalu-

tion metrics across the compared methods. Table 4 illustrates the

ve-fold cross-validation of 1420 clinical subjects (setting 2 ), and

ur DLSTM shows competitive results. Table 5 shows the results of

xternal-validation on longitudinal scans (setting 3). The “Ori CNN

all scans)” in Table 5 represents the results computed by all scans

f longitudinal subjects independently, and the “Ori CNN” only in-

ludes the last scan for each subject. 

We show the qualitative results ( Fig. 8 ) in response to the chal-

enge examples in Fig. 1 . The MC-CNN and LSTM, which do not

nclude temporal information, fail in the challenging case. While

hen time information is included, the algorithms perform better,

nd our DLSTM achieves superior results. 

In both cross-validation and external-validation, our method

chieves competitive results across all five metrics including accu-

acy, AUC, F1 score, recall and precision. In this cross-validation,

ur method is empirically evaluated to be effective in the longitu-

inal subjects set from NLST ( setting 1 ) and clinical datasets com-

ining cross-sectional and longitudinal subjects ( setting 2 ). For ex-

mple, our proposed DLSTM improves the conventional LSTM on

1 score from 0.6785 to 0.7085 ( Table 3 , NLST dataset), and from

.7417 to 0.7611 ( Table 4 , clinical cohort). 

The experiments of external-validation ( setting 3 ) support that

he two concerns in Section 2.1 should be addressed: (1) the lat-

st scans achieve higher performance compared with all scans (as

able 4 ), which supports that the emphasis on last scan is mean-

ngful. (2) The method without time information could be worse

han the “Ori CNN” performance, indicating the time-information

xclusion may ruin the model in practice. Additionally, our model

ddresses the two concerns effectively and outperforms the exist-

ng time-information included models comprehensively. 

. Discussion 

.1. Experiments on tumor-CIFAR 

The proposed DLSTM (AUC 0.984) outperforms the baselines

i.e., CNN (AUC 0.917) and LSTM (AUC 0.953)) in Tumor-CIFAR-v1 ,

hich indicates that the DLSTM can work better on regularly sam-

led longitudinal data. The results of version 2 indicate that the

lassification is very challenging for time-free models (i.e., not in-

lude the time information and only feed the image) if the longi-



8 R. Gao, Y. Tang and K. Xu et al. / Medical Image Analysis 65 (2020) 101785 

Fig. 7. The receiver operating characteristic (ROC) curves of the results on Tumor-CIFAR. The right bottom of the figures shows the Area Under the Curve (AUC) values of 

different methods. (1) version 1: rough regularly sampled data. The CNN and LSTM achieve reasonable performance, and the proposed DLSTM performs better. (2) version 

2: extremely irregularly sampled data. The CNN and LSTM achieve minimal learning while the proposed DLSTM achieve high performance. (best view in color). 

Table 4 

Experimental results on clinical datasets (%, average (std) of cross-validation). 

Method Accuracy AUC F1 Recall Precision p-value 

Ori CNN 84.80(2.43) 89.00(1.65) 70.29(4.26) 63.46(3.51) 78.83(5.70) < 0.05 

MC –CNN 84.51(1.29) 90.85(1.13) 70.55(1.29) 62.85(1.53) 80.84(4.42) < 0.05 

LSTM 86.27(1.29) 90.27(1.15) 74.17(2.47) 69.73(2.62) 79.56(5.69) 0.08 

Time-LSTM 85.79(2.37) 90.81(1.57) 74.57(3.81) 71.08(3.56) 78.71(6.48) 0.42 

tLSTM 86.42(1.48) 91.06(1.48) 74.36(1.99) 68.55(1.55) 81.49(5.28) 0.40 

DLSTM1 86.97(1.45) 91.17(1.53) 76.11(2.68) 72.71(2.38) 80.04(5.18) ∗(base) 

DLSTM2 86.98(1.20) 91.41(1.51) 75.54(1.67) 71.24(5.01) 81.22(6.11) –

DLSTM3 85.99(1.13) 91.10(1.69) 74.68(2.89) 70.51(6.07) 80.23(5.55) –

DLSTM4 86.91(1.37) 91.07(1.28) 75.85(1.94) 72.39(3.65) 80.21(6.34) –

The average and standard deviation (std) of five-fold test results are reported. 

The best average results are shown in bold . The p < 0.05 indicates our method significantly improve the 

compared method (McNemar test). 
∗ Methods citations: Ori CNN ( Liao et al., 2019 ), LSTM ( Hochreiter and Schmidhuber, 1997 ; Shi et al., 

2015 ), Time-LSTM ( Zhu et al., 2017 ), tLSTM ( Santeramo et al., 2018 ). 

Table 5 

Experimental results on cross-dataset test (%, external-validation). 

Method Accuracy AUC F1 Recall Precision p-value 

Train and Test both on longitudinal subjects 

Ori CNN (all scans) 83.42 83.50 52.53 45.77 62.66 < 0.05 

Ori CNN 87.58 85.10 59.31 55.13 64.18 < 0.05 

MC –CNN 85.89 76.54 56.21 55.13 57.33 < 0.05 

LSTM 85.89 83.80 57.32 57.69 56.92 < 0.05 

Time-LSTM 88.00 87.82 65.87 68.75 63.22 < 0.05 

tLSTM 86.73 88.69 66.31 79.49 56.88 < 0.05 

DLSTM1 88.63 89.05 68.24 74.36 63.04 ∗(base) 

DLSTM2 89.47 88.62 69.14 70.00 68.29 –

DLSTM3 89.47 87.39 67.11 63.75 70.83 –

DLSTM4 89.26 88.42 69.46 72.50 66.67 –

The best results are shown in bold . The p < 0.05 indicates our method significantly im- 

prove the compared method (McNemar test). 
∗ Methods citations: Ori CNN ( Liao et al., 2019 ), LSTM ( Hochreiter and Schmidhu- 

ber, 1997 ; Shi et al., 2015 ), Time-LSTM ( Zhu et al., 2017 ), tLSTM ( Santeramo et al., 2018 ). 
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tudinal data is extremely irregularly sampled, while the proposed

DLSTM captures the time dependence effectively. 

We provide the analytical equation Eq. (15) for prediction

(malignant vs. benign) using the lesion size and time stamp in

Section 3.1.1 for simulation. In theory, the Eq. (15) can be adopted

to assess the growth rate of the pulmonary nodule and then the

growth rate can be furtherly applied to predict the nodule ma-

lignancy. However, in practice, the exact pulmonary nodule size is

usually not available. Also, the indicators of lung cancer are com-

plicated which may not only be evidenced by the nodule size or

growth rate. More indicators (such as nodule shape, nodule inten-

sity, tissue around the nodule, nodule location) could also play es-

sential roles. These factors can be indicated by the CT images. Thus,
 h  
t is hard to directly use an analytical equation in practice that

ith only considers the pulmonary nodule size and time stamps.

owever, we believe the size and time can be included as impor-

ant indicators if the data is available. 

.2. Experiments on lung CT cohorts 

The traditional CNN network (e.g., ( Liao et al., 2019 )) only takes

ne scan per patient for the lung cancer diagnosis, ignoring the

dditional variations encoded in longitudinal scans. The multi-

hannel CNN strategy (similar to Ardila et al. (2019) ) concentrates

he longitudinal scans at the channel dimension, which does not

ighlight the time and order information. The LSTM utilizes the
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Fig. 8. Qualitative results related to Fig. 1 . The upper part is from a non-cancer patient, which with large time interval between two scans. The bottom part is from a cancer, 

and the two scans is close at time distance. The DLSTM is the exponential version. 
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rder of sequence while overlooking the timestamp of scans. The

ound time-included methods (e.g., Time-LSTM ( Zhu et al., 2017 )

nd tLSTM ( Santeramo et al., 2018 )) can model the time intervals

etween consecutive scans, but neglect the global information that

ewer scans are typically more informative. 

Our DLSTM is motivated by the explanation of forget gate and

nput gate in LSTM. The temporal emphasis model (TEM) in DL-

TM is the decrement function taking time distance, indicating

he longer distance scan receives less emphasis. The time dis-

ances of longitudinal scans include global information, and the lo-

al differences (similar as the time interval in Zhu et al. (2017) ,

anteramo et al. (2018) ) are e ncoded by two adjacent time

istances. Briefly, our method introduces the explainable time-

istanced gates without changing the LSTM structure. 

Our proposed method shows significant improvement ( p <

.05) over compared methods under the contexts of longitudinal

maging (setting 1 and 3). Under the setting 2 of cross-validation

n combining cross-sectional (single scan per subject) and longi-

udinal scans, the overall improvements can be indicated by the

ve metrics, while the p -values indicate that improvement from

ur method on the LSTM-based methods is not significant. The po-

ential reason is the sequential methods (ours and the compared

STM-based methods) can be biased by the large ratio (~66%, indi-

ated by Table 2 ) of cross-sectional scans. 

Another interesting finding is the comparison of the four dif-

erent backbone functions in the DLSTM. Overall, those mod-

ls achieve similar performance, indicating that the DLSTM ap-

roach is compatible with families of linear, quadratic, exponential,

nd log-exponential temporal models. In refined comparison, the

uadratic version (DLSTM3) achieves the “least satisfying” compre-

ensive performances, and it is the only concave function among

ompared backbones. In practice, we would recommend using the

onvex function as the backbone since the DLSTM1 achieves the

ost robust performances across different settings and metrics. 

. Summary 

We propose the novel Distanced L STM (DL STM) along with

ime-distanced gates to model the global temporal intervals be-

ween longitudinal CT scans for lung cancer diagnosis. The exper-

ments on the simulated datasets (Tumor-CIFARs) and empirical CT

atasets with five metrics (including 1794 NLST and 1420 in-house
ubjects) demonstrate the effectiveness of DLSTM. Our method is

enerally superior to baseline methods and the representative ex-

sting time-information included methods (i.e., Time-LSTM and tL-

TM) under the cross-validation and external-validation settings.

he core of DLSTM should be generalizable, indicating that the

oncept of “time distance” is easy to be extended with other tem-

oral dependence without increasing the model complexity. 
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