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a b s t r a c t 

With the rapid development of image acquisition and storage, multiple images per class are commonly 

available for computer vision tasks (e.g., face recognition, object detection, medical imaging, etc.). Re- 

cently, the recurrent neural network (RNN) has been widely integrated with convolutional neural net- 

works (CNN) to perform image classification on ordered (sequential) data. In this paper, by permutating 

multiple images as multiple dummy orders, we generalize the ordered “RNN + CNN” design (longitudi- 

nal) to a novel unordered fashion, called Multi-path x-D Recurrent Neural Network (MxDRNN) for image 

classification. To the best of our knowledge, few (if any) existing studies have deployed the RNN frame- 

work to unordered intra-class images to leverage classification performance. Specifically, multiple learn- 

ing paths are introduced in the MxDRNN to extract discriminative features by permutating input dummy 

orders. Eight datasets from five different fields (MNIST, 3D-MNIST, CIFAR, VGGFace2, and lung screening 

computed tomography) are included to evaluate the performance of our method. The proposed MxDRNN 

improves the baseline performance by a large margin across the different application fields (e.g., accuracy 

from 46.40% to 76.54% in VGGFace2 test pose set, AUC from 0.7418 to 0.8162 in NLST lung dataset). Addi- 

tionally, empirical experiments show the MxDRNN is more robust to category-irrelevant attributes (e.g., 

expression, pose in face images), which may introduce difficulties for image classification and algorithm 

generalizability. The code is publicly available. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Convolutional neural networks (CNN) have been widely applied

to extracting features for classification tasks (e.g., natural images,

robotics, medical images etc.) and achieved the state-of-the-art

performance with leading network infrastructures (e.g., VGGNet

[1] , ResNet [2] , DenseNet [3] , SENet [4] , etc.) and novel loss func-

tions (e.g., TripletLoss [5] , CenterLoss [6] , A-Softmax [7] , etc.). One

of the essential targets of feature extraction is to keep the discrim-

inability for the class label and mitigate class-irrelevant noises. The

“ideal” learning outcomes of a classification network should pro-

vide identical features for the images from the same class, but this

is seldom achievable in practice even for state-of-the-art methods.

Intra-class variation reduction could be the most intuitive way to

address this problem. For example, the images from the same per-
∗ Corresponding author. 

E-mail address: riqiang.gao@vanderbilt.edu (R. Gao). 
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on can be varied across a large range of attributes. The attributes

ike expression, age and face pose could be complicating factors

or the face classification task. Therefore, learning discriminative

usually attribute-irrelevant) features for multiple intra-class im-

ges (e.g., different photos of the same person) should be bene-

cial to leverage the classification performance. Customarily, there

re two directions to address this target. 

One direction is reducing intra-class variation under conven-

ional CNN contexts. Traditionally, the training images were sam-

led independently from the entire training population. To improve

he classification performance, in recent years, the researchers

ave started to control the learning strategies and add regulariza-

ion on loss function by intentionally learning from particular pairs

8] , triplets [5] , clusters [6] of the training data within a batch. The

dea behind such strategies is to take advantage of the intrinsic

orrelations between training samples by modeling the relation-

hip rather than training them independently. Such methods target

ntra-class variation reduction at the batch-level. 

https://doi.org/10.1016/j.neucom.2020.02.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.033&domain=pdf
mailto:riqiang.gao@vanderbilt.edu
https://doi.org/10.1016/j.neucom.2020.02.033
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Another direction is to learn more discriminative features by

hanging the conventional CNN structure and utilizing the order

f multiple inputs. For example, the multi-view CNN [9] took view-

rdered images from the same subject by concatenating multi-path

NN features for 3D shape recognition. Another important contri-

ution of learning from multiple images is the convolutional recur-

ent neural network (convolutional RNN [10] ), which combined the

dvantages of both CNN and RNN to learn features from sequenced

patial data. Some methods took longitudinal data [10] , [11] or en-

oded the different spatial patches of an image as a sequence with

rder information [12] , [13] feeding to the RNN. In practice, no clear

rder or the order information cannot be obtained for many tasks.

The feature learning of classification with multiple attribute-

rdered images can be interpreted as boosting the class discrim-

nability by utilizing the order and mitigating the noise of at-

ribute. For instance, five photos of a person across different ages

s an ordered sequence should be better recognized than ran-

omly sampled one photo from a large age range. Herein, we try

o achieve a similar target with unorder images. We propose that

ifferent “dummy order” permutations can be introduced to learn

ttribute-irrelevant discriminative features. For instance, dummy

rders {“a- > b- > c”, “c- > a- > b”, “b- > c- > a”} can be obtained from

a, b, c} (details in Section 3 ). An intuitive idea to model differ-

nt orders is to aggregate the information from different paths

daptively in a multi-path network (details in Fig. 2 ). Motivated

y keeping “memory” of sequence in the text and speech do-

ain, we apply the widely used RNN structure for keeping class-

iscriminability within intra-class image sequence. In this case,

ultiple RNN paths can be employed, where each path learns one

ermutation of multi-image. The model is expected to be robust

o the confounding attributes (e.g., age, pose in face images) while

eeping the discriminability of class, since only the class label is

istinctly included in the loss function (commonly, cross-entropy

oss). Recent studies have taken different spatial patches of an im-

ge as sequence feeding to the network (e.g., [12] , [13] ). However,

o the best of our knowledge, very limited (if any) previous meth-

ds have explored the convolutional RNN co-learning by sequenc-

ng independent unordered images. 

Herein, we propose the Multi-path x-D RNN (MxDRNN) to learn

iscriminative attribute-irrelevant features from multiple images of

he same class. Briefly, we concatenate multiple RNN paths to col-

aboratively learn features from multiple images. Each path corre-

ponds to a particular “dummy order” of the input images. By con-

atenating those “dummy orders”, the proposed network structure

an see multiple images (of the same class) from different “views”.

xcept for belonging to the same class, we do not need any further

estrictions (like attribute-ordered) of the co-learning images. 

Unordered images are commonly available across different

asks. To verify the generalizability of our method, we conduct ex-

eriments on eight datasets of five different image domains. 

Lung cancer detection is an example in the medical image with

ctually ordered scans. Among the prevalent lung cancer detection

ethods, a single scan is usually used for one subject. Better clas-

ification performance can be achieved when adopting our xDRNN

ethod to the longitudinal CT data (multiple ordered CTs per sub-

ect). Furthermore, by adding extra “dummy orders”, the multi-

ath version (MxDRNN) achieves higher performance. 

In summary, the contributions of this work are three folds. 

1 The proposed RNN + CNN strategy improves classification per-

formance over leading methods by permutating intra-class un-

ordered images. Results show that our method can learn the

feature robust to category-irrelevant attributes (e.g., age, pose). 

2 The proposed MxDRNN is a flexible structure, which can be

used as (1) an end-to-end learning method by itself, or (2) a

post component for existing networks. 
3 The proposed MxDRNN is generalizable, which can be applied

to (1) 1-D, 2-D, and 3-D learning scenarios, and (2) differ-

ent domains (e.g., natural image, medical image). In addition,

we introduce the multi-channel CNNs for fair comparisons,

which take the same inputs of xDRNN and MxDRNN in the

experiments. 

Source code can be found at https://github.com/MASILab/

xdrnn _ examplecode . 

. Related works 

.1. Image classification 

Many methods have been proposed to improve classification

erformance, which even achieved better performance than hu-

ans on simple vision tasks [14] , [15] . MNIST [16] and CIFAR

17] are the most popular tiny image datasets to test the effective-

ess of algorithms. With the ImageNet Challenge, many new net-

ork structures have been presented (e.g., Inception [18] , ResNet

2] , DenseNet [3] ) to achieve superior performance on more com-

licated vision tasks. In the field of face recognition, some new

tructures like LightCNN [19] were proposed especially for face

ecognition. These networks are effective for extracting discrimi-

ative features for images and have been adapted to more spe-

ific learning tasks. Carefully selected network structures along

ith well-designed loss functions (e.g., DeepID2 [8] , FaceNet [5] ,

enterFace [6] , SphereFace [14] , ArcFace [20] ) achieved excellent

ace recognition performance in many public datasets (e.g., LFW

21] , MegaFace [22] , VGGFace2 [23] ). However, few methods have

een proposed to learn from multiple intra-class images with large

nter-image variations (e.g., face pose, age, emotion, etc.). 

Multi-path network structures were extensively studied re-

ently, including taking multiple inputs or different feature levels.

u et al. [9] proposed a multi-view CNN for 3D shape recogni-

ion by feeding multiple view-ordered images. Yu et al. [24] pro-

osed a hierarchical deep word embedding model to learn coarse-

o-fine features by combining multi-path of hierarchical features.

 spatial pyramid-enhanced VLAD layer was introduced to multi-

le structured feature maps for place recognition [25] . Zhang et al.

26] constructed a neighborhood of the target image for unsuper-

ised dimension reduction. 

.2. RNN and convolutional LSTM 

Recurrent neural networks (RNN) have been widely used in nat-

ral language processing (e.g., [27] ) and speech recognition (e.g.,

28] ) to understand sequence data. The most popular variants of

NN included Long Short-Term Memory (LSTM) and Gated Recur-

ent Unit (GRU [29] ). The common LSTM unit is composed of a cell

nd three gates (forget gate, input gate and output gate), which

s designed to be capable of learning long term dependencies. Re-

ently, the RNN (especially the LSTM) has been introduced in spa-

iotemporal tasks (known as convolutional RNN) for precipitation

owcasting [10] , pattern recognition [32] , [33] , image classification

34] , [35] , medical image analysis [11] , [36] , [37] , et cetera. In ad-

ition, the RNN structure helped to bridge multiple modal data,

or example, text and image in visual question answering systems

30] , [31] . Some special topics, like [35] multi-label recognition, can

lso utilize the CNN-RNN structure. 

The rationale for using convolutional RNN is to utilize both spa-

ial and temporal information. The RNNs are mainly designed with

rdered sequence data. Some of the works with RNN are designed

o explore inner connection within one sample image or spatial-

onnected images. For example, Campanella et al. [12] constructed

https://github.com/MASILab/mxdrnn_examplecode
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a sequence for RNN by ranking the risk of different patches of

whole slide images. The bidirectional convolutional LSTM was used

in the hyperspectral image for spectral-spatial feature extraction

[13] . Few works (if any) with RNN are designed for independently

unordered images, which is our main focus in this paper. 

2.3. Lung cancer detection 

Lung cancer detection is a binary classification (cancer or non-

cancer) task from the machine learning perspective. Imaging-based

early-stage lung cancer detection plays an essential role in reduc-

ing mortality [38] . 

The prevalent frameworks of lung cancer detection include two

steps: nodule detection and classification. Nodule detection ap-

proaches [38–40] have achieved great success. Drdila et al. [51] en-

coded the current and prior CT images as multiple channels in

CNN by utilizing detected nodules for lung cancer detection. Liao

et al. [41] proposed the 3D Deep leaky noisy network, which se-

lected 5 possible nodule-regions to classify the whole CT scan. Xu

et al. [11] built an RNN upon pre-trained CNN model to predict

lung cancer treatment response with longitudinal medical imaging.

Gao et al. [42] introduced the distanced gates in LSTM for irregular

sampled sequence. No existed work is found to explore dummy CT

orders for lung cancer detection. In this task, our method largely

builds on the publicly available resources ( https://github.com/lfz/

DSB2017 ) of [41] , which won first place in the Kaggle DSB Chal-

lenge. 

Lung Cancer detection is a special application of the proposed Mx-

DRNN in this paper. The classes in this task are Cancer and Non-

cancer. We combine learning multiple images from the same patient

(longitudinal data) rather than the same class but across patients.

And the input of xDRNN is actual time-ordered data, and MxDRNN

includes both actual time-ordered sequence and dummy ordered

sequence. 

3. Method 

3.1. Intuition 

In an ideal classification-based feature learning, the feature

vectors of two face images should be infinitely close when they

are from the same class. Unfortunately, this is nearly unachiev-

able, even for the state-of-the-art methods (e.g., lightCNN9 [19] ,

Light-CNN29 [19] ). Including a man and a woman as examples,

the normalized intra-class variances of each feature vector di-

mension are shown in Fig. 1 . The largest variation dimension is

visualized by computing the average faces of images with high

values (“high” face in Fig. 1 ) and low values (“low” face in Fig. 1 )

in that dimension. In the described ideal situation, the “high” face

and “low” face should be nearly the same, and the variance of

each dimension should close to zero. However, as an example,

the intra-class feature learned by LightCNN9 [19] is not consistent

across all the dimensions. The dimension with the largest vari-

ance distinguishes attributes like expression or pose, rather than

referring to class-discriminative meanings (as the clear difference

between “high” and “low” faces). This is a common limitation,

indicating the non-discriminative attributes (e.g., expression, age,

pose) have been encoded in the deep features. By contrast, using

the proposed method (bottom in Fig. 1 ), the general variations for

deep features are reduced and the corresponding average faces at

the largest variance dimension are more uniform. 

“How to learn a feature representation closer to the ideal state,

and can the achieved feature representation leverage classification

performance?” are the main focuses of this paper. 
.2. RNN and LSTM 

The RNN is widely used to model sequence data (e.g., speech

ata and natural language), which use short term memory (inter-

al states) to process sequence of inputs. 

The major limitation of naive RNN is that it cannot store long-

erm memory. To address this challenge, the Long Short-Term

emory (LSTM) was proposed [10] . The canonical LSTM contains

 gates (i.e., forget gate f t , input gate i t , output gate o t and 2 state

nits (i.e., cell state c t and hidden state h t ). The three gates protect

nd control the cell state. The forget gate decides what informa-

ion is discarded from the cell state, whose range is [0, 1] from a

igmoid function. The W in following equations are the weights we

eed to learn. The forget gate f t is computed by 

f t = σ
(
W x f · x k + W h f · h t−1 + W c f ◦ C t−1 + b f 

)
(1)

here ◦ denotes the Hadamard product. The input gate i t is de-

igned to decide the proportion of information to be updated: 

 t = σ ( W xi · x k + W hi · h t−1 + W ci ◦ C t−1 + b i ) (2)

The update of cell state from C t−1 to C t using the f t and i t is 

 t = f t ◦ C t−1 + i t ◦ tanh 

(
W x f · x k + W h f · h t−1 + b f 

)
. (3)

LSTM also maintains an output gate o t 

 t = σ ( W xo · x k + W ho · h t−1 + W co ◦ C t + b o ) . (4)

The hidden state h t is updated by 

 t = O t ◦ tanh ( C t ) . (5)

The convolutional LSTM is proposed to deal with spatiotempo-

al sequence data in [10] . As shown in Eq. (6) . the convolutional

STM is similar to LSTM, except that the input X t , cell state C t , hid-

en state H t and three gates (e.g. i t , f t and O t ) are encoded with

D spatial dimensions. The ‘ ∗’ is the 2D convolution operator in

q. (6) . 

i t = σ ( W xi ∗x t + W hi ∗h t−1 + W ci ◦ C t−1 + b i ) 

f t = σ
(
W x f ∗x t + W h f ∗h t−1 + W c f ◦ C t−1 + b f 

)

C t = f t ◦ C t−1 + i t ◦ tanh 

(
W x f ∗x t + W h f ∗h t−1 + b f 

)

o t = σ ( W xo ∗x t + W ho ∗h t−1 + W co ◦ C t + b o ) 

 t = o t ◦ tanh ( C t ) . (6)

.3. Encoder for a single path 

In some applications, we have more than one image per class

n both training and test sets while without knowing attributes re-

ation across multi-images. To collaboratively learning from mul-

iple same-class images, we utilize the convolution LSTM frame-

ork. We model the unordered data as “dummy ordered” (longi-

udinal) input to x-D RNN. 

Motivated by [10] , we generalize the LSTM to x-D (i.e., 1-D, 2-

 and 3-D) versions and unordered data in this paper. Since our

roposed method is generalizable for naive RNN and its variations

ike LSTM, we keep the “RNN” in our proposed algorithm’s name.

nd we mainly experiment with LSTM. 

Our x-D RNN module can be formulated as 

i t = σ ( W xi � χk + W hi � h t−1 + W ci ◦ C t−1 + b i ) 

f t = σ
(
W x f � χk + W h f � h t−1 + W c f ◦ C t−1 + b f 

)

C t = f t ◦ C t−1 + i t ◦ tanh 

(
W x f � χk + W h f � h t−1 + b f 

)

o t = σ ( W xo � χk + W ho � h t−1 + W co ◦ C t + b o ) 

 t = o t ◦ tanh ( C t ) (7)

here “� ” is convolutional (1-D, 2-D, 3-D) operation. χk ∈
 χ , . . . , χ } but not necessary in order. T is the number of images
1 T 

https://github.com/lfz/DSB2017
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Fig. 1. Examples of face images. We visualize the variations within about 700 images per person by computing the variance of intra-class over the variance of inter-class 

for each feature dimension (i.e., the variance of intra-class/inter-class versus feature dimension in the plots). We select the maximum variance dimension (max-dimension 

highlighted in red, which indicates large intra-class variations) and compute the average of faces those with top 60 highest value in max-dimension as “high” face, and top 

60 lowest value in max-dimension as “low” face to visualize the clear difference. Box (1) shows the images with the baseline method LightCNN9 and Box (2) show the 

images combining LightCNN9 with our method. 
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c
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L  

a

3

 

a  

c  

b  
eeding to x-D RNN module, which also represents the number of

o-learning samples each time (e.g., 2 or 3, and we call T “steps”

n the following). χ k is the x-D input data. 

Briefly, the main differences between xDRNN and convolutional

STM are that the input data χ k is generalizable to 1-D, 2-D, 3-D

nd is not necessarily related to the order information. 
.4. Multi-path with dummy ring orders 

The single path of x-D RNN can take advantage of information

cross images but does not make full use of it. Multiple images

an use different orders, which provide additional information to

oosting performance. To balance the model concision and number
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Fig. 2. The framework of MxDRNN is presented with “three steps” ( T = 3) as an example. The left panel shows the x-D RNN module ( Eq. (7) ), F represents the recurrent 

component. Different from the canonical RNN, and the input χ k can be 1-D, 2-D and 3-D data. { χ i , χ j , χm } indicates the multi-image group input to MxDRNN. The length 

of { χ i , χ j , χm } equals to both the “steps” and the number of “dummy ring orders”. We concatenate the output feature (at the channel dimension) of xDRNNs from all 

“dummy ring orders” to achieve the final classification. The output of xDRNN is final step of RNN, which is H t+1 in this figure. Solid arrows indicate “actual connection” in 

the network, and dotted lines are only used as the explanation. 
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of orders, we introduce the “dummy ring orders” rather than using

all combinations of multiple images. And the learning weights of

different paths are shared to avoid overfitting. 

The framework of our method with “dummy ring orders”

(DROs) is shown in Fig. 2 . DROs generate T (e.g., 2 or 3) dummy

orders that starting with each image, respectively. For the dataset

that the order is not externally defined, we randomly initialize the

multi-image with a dummy order. For the dataset with an actual

order (e.g., longitudinal data in Lung CTs), instead of randomly ini-

tializing the order of multi-image, the actual order is included in

one of the DROs. 

Using examples for detail, when dealing 2 steps data, the Mx-

DRNN could be described as 

O = M 

(
R 

(
χi , χ j 

)
, R 

(
χ j , χi 

))
(8)

and if the step T is set to 3, the MxDRNN is 

O = M 

(
R 

(
χi , χ j , χm 

)
, R 

(
χm 

, χi , χ j 

)
, R 

(
χ j , χm 

, χi 

))
(9)

where R ( χ i , χ j , χm 

) is the x-D RNN operator (shown in Fig. 2 as

F ), and O is the output of MxRNN, and M is the strategy combin-

ing multiple paths. Note that we will not change the number of

inputs of training and test set when using MxDRNN, and will keep

the training and test set completely disjoint. For example, if the

original data set is 

{ χ1 , χ2 , . . . . . . χn } 
when applying the proposed MxRNN with “3 steps”, the inputs of

DROs are 

{ { χn −1 , χn , χ1 } , { χn , χ1 , χ2 } , . . . , { χn −2 , χn −1 , χn } } . 
The number of original samples equals to the number of in-

puts to MxDRNN. A single input { χn −1 , χn , χ1 } for MxDRNN rep-

resents three paths “χn −1 → χn → χ1 ”, “χ1 → χn −1 → χn ”, “χn →
χ1 → χn −1 ” that can be computed by Eq. (9) . 

Briefly, multiple images from the same class or the same sub-

ject are collaboratively learned in one single forward. The multi-

path version MxDRNN with different paths of the multi-image fur-

therly learns the discriminability of class and is robust to class-

irrelevant attributes. Indicated by Fig. 1 , the learned feature from

our method is less sensitive to variations. 

4. Experiments and results 

Fig. 3 illustrates the experiment design. In brief, we evalu-

ate the performance of the proposed method on MNIST [16] , 3D

MNIST ( https://www.kaggle.com/daavoo/3d-mnist ), CIFAR10 [17] ,
IFAR100 [17] , VGGFace2 [23] and lung screening computed to-

ography (CT) imaging (NLST [43] and non-public lung imaging

ata). For each dataset, we select a leading deep network on that

pplication as a “base network”. For our method, both xDRNN and

xDRNN, also termed as (M)xDRNN, are evaluated using the re-

urrent ideas. 

To provide a fair comparison with multiple images consider-

tion (e.g., seeing more than one image of an unknown class at

nce), we additionally implement the multi-channel versions. Dif-

erent steps of the base network have been compared in MNIST,

D-MNIST and CIFAR10. The MultiChannel-ToyNet concatenates

ultiple images as multiple input channels (MC-ToyNet in re-

ult tables). xDRNN-ToyNet and MxDRNN-ToyNet are xDRNN and

xDRNN, based upon the ToyNet core. “ToyNet” is replaced by

DenseNet” in the experiments of CIFAR100, and is replaced by

CNN” in the experiments of VGGFace2 and lung datasets. 

Note that the “CNN” is a simple 1-D convolutional layer to

airly compare with the 1-D convolutional “RNN” component in

ur method. 

In the applications of MNIST, 3D MNIST, CIFAR10, CIFAR100 and

GGFace2, we test our algorithm with training/validation/testing

plits. For lung datasets, five-fold cross-validation is performed to

ddress the limited number of medical images available for test-

ng. The hyper-parameters of different datasets are illustrated in

able 1 . Our default Optimizer is Adam [44] , but we follow the

ettings of open source code in CIFAR100 for the fair comparison.

he hyper-parameters are varied among different datasets, which

re tuned based on the validation set across all compared methods

not bias to our method). 

.1. MNIST 

MNIST is a dataset of 10 classes of handwritten digits with a

ize of 32 × 32. Its training set with 60,0 0 0 examples, along with

 test set with 10,0 0 0 examples. In this study, we split the train-

ng/validation/testing size as 54 K/6 K/10 K. 

The base network structure from the MNIST example of offi-

ial PyTorch 0.41 [45] repository (named as “ToyNet”) is used for

NIST. It only contains two convolutional layers and one dropout

ayer, followed by two fully connected layers. Note that the same

etwork structure is used in our experiments with 3D MNIST and

IFAR10. 

“# steps” in Table 1 represents the number of images input

eeding to x-D RNN module each time is “#,” whose technical

etails are introduced in Section 3 . We also use the “# steps” no-

ion in the following experiments. 

https://www.kaggle.com/daavoo/3d-mnist
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Fig. 3. The proposed MxDRNN algorithms are presented in dotted line boxes. We test 1-D, 2-D and 3-D versions with different networks and different loss functions. The 

3DDLNN net is also named as “Kaggle Top 1 ′′ method as the winner of the competition. 

Table 1 

Hyper-parameters across different datasets. 

Datasets Initial LR Decreased epochs Decreased ratio Max epoch Batch size Optimizer Weight decay 

MNIST 0.001 N/A N/A 200 64 Adam 0 

3DMNIST 0.001 N/A N/A 200 64 Adam 0 

CIFAR10 0.001 N/A N/A 200 64 Adam 0 

CIFAR100 0.1 [150, 210] 0.1 300 64 SGD 5e–4 

VGGFace2 0.0005 [20,30,40] 0.4 100 128 Adam 0 

Lung CTs 0.01 [50,70,80] 0.4 100 128 Adam 0 

∗Initial LR represents initial learning rate. The learning rate would multiply the Decreased ratio at the Decreased Epochs. Our method is a post-network of pre-train model 

in VGGFace2 and Lung CTs. 

Table 2 

Test accuracies (%) / test losses on MNIST. 

Network 2 Steps 3 Steps 

ToyNet 99.15 / 0.031 (steps N. A.) 

MC-ToyNet 96.69 / 0.102 99.73 / 0.016 

xDRNN-ToyNet 99.73 / 0.013 99.87 / 7.87e-3 

MxDRNN-ToyNet 99.78 / 9.25e–3 99.90 / 1.35e–3 
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Table 3 

Test accuracies (%) / test losses on 3D MNIST. 

Network 2 Steps 3 Steps 

ToyNet 92.44 / 0.271(steps N.A.) 

MC-ToyNet 96.27 / 0.160 97.98 / 0.055 

xDRNN-ToyNet 97.37 / 0.116 99.60 / 0.0293 

MxDRNN-ToyNet 97.88 / 0.0769 99.60 / 0.0290 

Table 4 

Test accuracies (%) / test losses on CIFAR 10. 

Network 2 Steps 3 Steps 

ToyNet 60.19 / 1.02 (steps N.A.) 

MC-ToyNet 67.17 / 0.970 73.53 / 0.776 

xDRNN-ToyNet 75.16 / 0.718 85.06 / 0.439 

MxDRNN-ToyNet 78.06 / 0.621 86.00 / 0.378 
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As seen in Table 2 , the classification performance of xDRNN

s superior compared with baseline methods, while the MxDRNN

s further improved and outperforms the multichannel ToyNet. “3

teps” works better than “2 steps.”

An explanatory experiment is performed to visualize the fea-

ure spaces of MNIST using the LeNet ++ . Briefly, we plot the test

et of MNIST in Fig. 4 . We visualize the features from the test-

ng set using the trained model at epoch = 80. In the CNN method

LeNet ++ ), the features are less discriminative in terms of intra-

lass variations and inter-class similarities. With our xDRNN, the

lassification surface is more discriminative, while the multi-path

ersion brings further improvements. Rather than modifying the

oss function like CenterFace [6] , ArcFace [20] , we only use the

ross-Entropy loss in the training. 

.2. 3D-MNIST 

3D MNIST is the 3D generalization of partial 2D MNIST

rom Kaggle with 12,0 0 0 16 × 16 × 16 vol. The train-

ng/validation/testing splits are 9 K/1 K/2 K. The same ToyNet de-

ign is extended from 2D to 3D for 3D MNIST. As seen in Table 3 ,

DRNN and MxDRNN achieve better test accuracies and test losses

n both “2 steps” and “3 steps” versions. 
.3. CIFAR10 

The CIFAR10 dataset consists of 60 K natural images of

0 classes with the a of 32 × 32. We split the train-

ng/validation/testing size as 45 K/5 K/10 K. The same ToyNet

tructure as 2D MNIST experiment is applied to CIFAR 10. 

As seen in Table 4 , the proposed xDRNN and MxDRNN meth-

ds improve the performance with a large margin (e.g., accuracies

rom 60.19% to 78.07% and from 60.19% to 86.00%, respectively).

he proposed methods achieve better performance compared with

he MultiChannel-ToyNet (MC-ToyNet). As with the prior datasets,

3 steps” works better than “2 steps”. 
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Fig. 4. Visualization on feature space of MNIST on the test set. The left panel is the feature distribution map from the CNN. The middle panel is the feature distribution map 

from the proposed x-D RNN component, while the right is panel of the proposed MxDRNN version. 

Table 5 

Test accuracies and losses and on CIFAR100(%). 

Network Params (10 6 ) Accuracy Loss 

AlexNet 2.50 43.87 ∗ 3.10 ∗

VGG19-BN 20.09 71.95 ∗ 1.50 ∗

ResNet-110 1.73 71.14 ∗ 1.04 ∗

PreResNet-110 1.73 76.35 ∗ 1.02 ∗

WRN28-10 36.54 81.86 ∗ 0.757 ∗

ResNeXT29, 8 × 64 34.52 82.66 ∗ 0.740 ∗

ResNeXT29, 16 × 64 68.25 82.70 ∗ 0.691 ∗

DenseNet 0.800 77.12 ∗ –

DenseNet(190, 40) 25.82 82.83 ∗ 0.751 ∗

ShuffleNet 1.000 70.06 ∗∗ –

NasNet 5.200 79.34 ∗∗ –

SE-ResNet152 66.2 77.29 ∗∗ –

DenseNet + 0.800 74.63 1.18 

xDRNN-DenseNet 0.804 85.83 0.507 

MxDRNN-DenseNet 0.808 87.76 0.450 

xDRNN-DenseNet + 0.804 85.88 0.498 

MxDRNN-DenseNet + 0.808 87.70 0.452 

The algorithms with “+ ” are with training/validation/testing splits and test accu- 

racies are reported, and the rest are with training/validation splits on training/test 

sets of CIFAR100 and maximum validation accuracies are reported. 

The results with “∗” are picked from GitHub ( https://github.com/ bearpaw/pytorch- 

classification). 

The results with “∗∗” are gotten the code GitHub ( https://github.com/weiaicunzai/ 

pytorch-cifar100 ). 

“DenseNet” represents DenseNet (100, 12) in this table, which indicates the depth 

of DenseNet backbone is 100 and growth Rate is 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Example samples in face recognition tasks. The gallery set and probe set 

with great variations. The age examples in gallery set are mature, and those in 

probe set are young. The pose examples in gallery set and probe set are for front 

view and profile view, respectively. 
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4.4. CIFAR100 

CIFAR100 [17] is similar to CIFAR10 but has 100 classes

containing 600 images each. There are 500 training images

and 100 testing images per class. And the image size is

32 × 32. The training/validation/testing splits are 45 K/5 K/10 K.

To compare with GitHub methods ( https://github.com/bearpaw/

pytorch-classification ) with the exact same settings, the results

from 50k/10 K training/validation splits are also provided with the

highest validation accuracies. 

On CIFAR100 dataset, we compare our results with the state-of-

the-art network structures. We take the DenseNet as base-net and

include AlexNet [46] , VGG19 [1] , ResNet [2] , DenseNet [3] , WRN

[47] , ResNeXt [48] , ShuffleNet [49] , NasNet [50] , Se-ResNet [4] for

comparison. xDRNN-DensNet(100, 12) and MxDRNN-DensNet(100,

12) are the proposed methods upon DensNet(100, 12). In Table 5 ,

DenseNet represents DenseNet (100, 12), which means the Depth

of network is 100 and Growth Rate is 12. 
“3 steps” is applied in CIFAR100. The results are shown in

able 5 , and the results with an asterisk are picked from the

itHub. The proposed method’s performance on the test set is bet-

er than all baseline methods. Note our experiments are trained

n CIFAR100, so the numbers of report parameters are different

rom those reported in the GitHub ( https://github.com/bearpaw/

ytorch-classification ), which were computed based on CIFAR10. 

.5. VGGFace2 

VGGFace2 dataset [23] has over 80 0 0 identities in the train-

ng set and 500 identities in the test set. The identities in training

nd test sets are disjoint. VGGFace2 has large variations in pose,

ge, illumination, ethnicity and profession. To train our lightweight

etwork ((M)xDRNN + fully connected layer) for face feature ex-

racted by the existing model, we use 20 0 0 identities (about

0 0,0 0 0 images) of the training set. Multi-Channel CNN + fully

onnected layer is introduced for the fair comparison. With these

0 0 0 identities, we split 12 images per person for validation set

nd the rest for training. Faces are detected by MTCNN [40] and

esized to 128 × 128. 

There are two test subsets with pose and age variations, with

xamples shown in Fig. 5 . We have 100 identities with large age

ariations and 368 identities with large pose variations in the VG-

https://github.com/
https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification
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Fig. 6. Examples of pose set in VGGFace2. The left panel comes from probe set (indicated by blue) and the right panel is the gallery set (indicated by yellow). Five challenging 

cases from same identity are shown with the baseline and our methods. These five are all failed in LightCNN9. Our method corrects four of them and the image from different 

domain still fails. 

Table 6 

Classification accuracies on VGGFace2 test set (%). 

Network Age Pose 

Random guess 0.01 0.003 

LightCNN9 48.00 46.40 

LightCNN29v2 70.94 71.97 

ArcFace 52.30 54.40 

SENet50 59.44 68.20 

LightCNN9-MC –CNN 56.49 50.72 

LightCNN9-xDRNN 71.70 76.13 

LightCNN-MxDRNN 72.72 76.54 

∗The LightCNN9, LightCNN29v2 pre-train models are from https://github.com/ 

AlfredXiangWu/LightCNN . Note the LightCNN29v2 model is even higher than the 

best performance reported in their paper [19] . 
∗The ArcFace pre-train model is from https://github.com/ronghuaiyang/ 

arcface-pytorch . 
∗The SENet50 pre-train model is from https://github.com/ox-vgg/vgg _ face2 . 
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Table 7 

Demographic distribution in our experiments. 

Lung data source NLST MCL VLSP 

Total subjects 1794 567 853 

Longitudinal subjects 1794 105 370 

Cancer frequency (%) 40.35 68.57ss 2.00 

Gender (male,%) 59.59 58.92 54.87 
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Face2 test dataset. To make the task more challenging, we use the

ature images as the gallery set for age set and the frontal images

s the gallery set for pose, while for the probe set, we use images

ith the larger variations (i.e., with the larger age gap and pose

ngle between the gallery and probe sets). 

We adapt (M)xDRNN as a network component upon the pre-

rained state-of-the-art networks (LightCNN9). Briefly, the fea-

ures from each individual image from the pre-trained networks

ere integrated to the final outputs using our light-weighted

etwork (MxDRNN + fully connected layer, shown in Fig. 3 as

(M)xDRNN(1D)”). 

“2 steps” is applied in VGGFace2, and the result is shown in

able 6 . The proposed xDRNN and MxDRNN methods lead to sig-

ificant improvements upon baseline methods (e.g., from 46.40%

o 76.54% with MxDRNN), which also improve upon multi-channel

earning with LightCNN9 feature and the state-of-the-art networks

e.g., LightCNN29v2 [19] , and SENet50 with VGGFace2 [23] ). 

Qualitative analysis is illustrated in Fig. 6 . Five challenging cases

ith large pose are all failed with the baseline. Utilizing multi-

mage with our method, four of them are successfully recognized.

he examples indicate our method is robust to the pose attribute,

ven both the training and testing are without specific pose in-
ormation. The case with large domain variation compares to the

allery set (i.e., image 5) also failed in our method. 

.6. Lung CT imaging 

CT scans from 1794 subjects are employed from the Na-

ional Lung Screening Trial (NLST) [43] , which is a large-scale

ung screening study with CT screening exams public available.

420 in-house clinically acquired subjects from Molecular Char-

cterization Laboratories (MCL, https://mcl.nci.nih.gov ) and Van-

erbilt Lung Screening Program (VLSP, https:// www.vumc.org/

adiology/lung ) are also used in evaluation (see Table 7 ), which

re used in the de-identified form under institutional review board

upervision. 

Our preprocessing follows Liao et al. [41] . First, we resample the

-D volume to 1 × 1 × 1 mm isotropic resolution, and, second,

he lung is segmented using ( https://github.com/lfz/DSB2017 ) from

he original CT volume and the non-lung regions are zero-padded

o Hounsfield unit score of 170. We use an existing CNN model

o extract the CT image feature. Our algorithm is compatible with

nd-to-end training, or as a sub-network to process the features

rom existing models. In this section, we use the (M)xDRNN as a

ost network to process the features acquired from Liao et al. As

hown in Fig. 3 , the (M)xDRNN is a network with 1-D convolu-

ional and then followed by fully connected layer to the loss func-

ion. The feature dimension extracted from Liao et al. is 64 for each

igh-risk region. Five high-risk regions (possible nodules) of each

can are concatenated to 5 × 64 input as a scan-level feature. “Ori

NN” in Table 8 represents the “original” results obtained by the

rained model of [41] . “MC 

–CNN” in this section represents multi-

hannel CNN (1D), which concatenates features from multi-scans

https://github.com/AlfredXiangWu/LightCNN
https://github.com/ronghuaiyang/arcface-pytorch
https://github.com/ox-vgg/vgg_face2
https://mcl.nci.nih.gov
http://www.vumc.org/radiology/lung
https://github.com/lfz/DSB2017
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Table 8 

Experiments on lung datasets. 

Method Accuracy AUC F1 Recall Precision 

Test results on NLST dataset 

Ori CNN 71.94(2.07) 74.18(2.11) 52.18(2.83) 38.07(2.63) 83.24(4.24) 

MC –CNN 73.26(3.10) 77.96(0.98) 59.39(3.70) 47.91(4.87) 78.62(3.09) 

xDRNNg 77.60(0.83) 79.55(1.33) 67.17(1.56) 57.88(2.34) 80.73(7.04) 

xDRNN 77.05(1.46) 80.84(1.20) 67.85(2.41) 59.92(4.43) 78.68(3.32) 

MxDRNNg 77.62(2.79) 80.38(1.42) 69.11(1.61) 62.90(2.59) 77.39(6.99) 

MxDRNN 78.16(1.59) 81.62(1.27) 70.33(1.56) 63.46(1.65) 79.16(5.06) 

Test results on our in-house datasets (MCL and VLSP) 

Ori CNN 84.80(2.43) 89.00(1.65) 70.29(4.26) 63.46(3.51) 78.83(5.50) 

MC –CNN 84.51(1.29) 90.85(1.13) 70.55(1.29) 62.85(1.53) 78.83(5.50) 

xDRNNg 85.72(2.31) 90.75(1.17) 73.20(3.57) 67.13(2.99) 80.76(6.58) 

xDRNN 86.27(1.29) 92.27(1.15) 74.17(2.47) 69.73(2.62) 79.56(5.69) 

MxDRNNg 85.99(0.87) 90.35(1.25) 76.51(2.69) 74.97(3.14) 78.38(5.05) 

MxDRNN 86.75(1.59) 90.68(1.32) 75.88(2.90) 72.95(3.59) 79.13(3.59) 

∗xDRNN and MxDRNN are with the backbone of LSTM. xDRNNg and MxDRNNg are with the backbone of GRU. 
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in the “channel” dimension. Note the input of MC 

–CNN is the same

as (M)xDRNN for a fair comparison. Since the number of available

CT scans with three time-points per subject is limited, we limit

consideration to the “2 steps” design in the lung datasets. 

Table 8 is the five-fold cross-validation results on NLST and our

clinical datasets. In each fold, the training/validation/test ratio is

around 3: 1: 1. The test results with average and the standard de-

viation are reported. The upper part of Table 8 shows the lung can-

cer detection performance on the NLST cohort, where we only use

the longitudinal data for training and testing. We evaluate the pro-

posed method on the clinically acquired data (bottom of Table 8 ),

where we use both longitudinal data and cross-sectional data in

training and validation. The cross-sectional scans are duplicated to

2 steps and use longitudinal scans. The ratio of longitudinal scans

and cross-sectional scans is the same in each fold. Different back-

bones (i.e., LSTM and GRU) in our method are compared, and the

results are basically comparable (LSTM is comprehensively a little

bit better). The experiments with GRU and LSTM backbones indi-

cate our method can easily transfer to other RNN structures. 

5. Discussion 

Our goal is to answer the question in Section 3.1 : “How to

learn a feature representation closer to the ideal state, and can

the achieved feature representation leverage classification perfor-

mance?” The (M)xDRNN method with “dummy ring orders” (DROs)

gives a positive answer. The input of multi-image tuple may have

variations at the image-level, while belonging to the same class.

Motivated by the widely use of RNN in the text and speech do-

mains, which is designed to keep the “memory” of the sequence,

we use the RNN path in our work is to keep the “memory” of the

class to obtain class-discriminability and tolerant the intra-class

variations. Ideally, the extracted feature should be more discrimi-

native for classification. The multi-path strategy seeks more poten-

tial reasonable ways to encode the multi-image especially when

no specific order is known, which can be regarded as data aug-

mentation. For a fair comparison with multi-image and validate

the effectiveness of the RNN-based structure, we also introduced

the experiments that concatenate the multi-image at the channel

dimension. Based on our best understanding and empirical exper-

iments validation, the network firstly collaboratively learns more

discriminative features with multiple images than a single image,

since multiple images provide additive information for the same

identity. In addition, the strategy of training with multi-image and

multi-path increases the robustness of variation of test images. 

Beyond the superior performance, we dig into the deeper level

to visualize the samples using the proposed algorithm in Fig. 4 .
eanwhile, the normalized variances of the intra-class features are

educed and the variations (like pose, expression) are suppressed

see Fig. 1 ), which supports that our method is more robust to

ategory-irrelevant attributes. 

There are several limitations of the proposed method. First, al-

hough the performance of our method is superior to most existing

ethods, our approach requires multiple images within the same

lass. Second, the proposed methods introduce more parameters

or the training models. Fortunately, the increased number of pa-

ameters of MxDRNN is relatively small. Take CIFAR100 as an ex-

mple, we only increase the parameters from 0.800 M (DenseNet

100, 12)) to 0.808 M (MxDRNN + DenseNet (100, 12)), and the

erformance increased from 74.63% to 87.70% (see Table 5 ). 

. Conclusion 

In this paper, we propose the generalizable MxDRNN method

o leverage classification performance using more than one image

er identity. It works for 1-D, 2-D and 3-D data across eight differ-

nt datasets of five different tasks, which indicates the generaliza-

ion ability of our method. The proposed MxDRNN brings large im-

rovements in both end-to-end training or post-processing of deep

eatures. Additionally, as shown in the face image example, the

earned features from our method are robust to category-irrelevant

ttributes (see Fig. 1 ) and achieve much higher performance (see

able 6 ). 
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