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a b s t r a c t 

Deep learning for three dimensional (3D) abdominal organ segmentation on high-resolution computed to- 

mography (CT) is a challenging topic, in part due to the limited memory provide by graphics processing 

units (GPU) and large number of parameters and in 3D fully convolutional networks (FCN). Two preva- 

lent strategies, lower resolution with wider field of view and higher resolution with limited field of view, 

have been explored but have been presented with varying degrees of success. In this paper, we propose a 

novel patch-based network with random spatial initialization and statistical fusion on overlapping regions 

of interest (ROIs). We evaluate the proposed approach using three datasets consisting of 260 subjects with 

varying numbers of manual labels. Compared with the canonical “coarse-to-fine” baseline methods, the 

proposed method increases the performance on multi-organ segmentation from 0.799 to 0.856 in terms 

of mean DSC score (p-value < 0.01 with paired t -test). The effect of different numbers of patches is eval- 

uated by increasing the depth of coverage (expected number of patches evaluated per voxel). In addition, 

our method outperforms other state-of-the-art methods in abdominal organ segmentation. In conclusion, 

the approach provides a memory-conservative framework to enable 3D segmentation on high-resolution 

CT. The approach is compatible with many base network structures, without substantially increasing the 

complexity during inference. 

Given a CT scan with at high resolution, a low-res section (left panel) is trained with multi-channel seg- 

mentation. The low-res part contains down-sampling and normalization in order to preserve the complete 

spatial information. Interpolation and random patch sampling (mid panel) is employed to collect patches. 

The high-dimensional probability maps are acquired (right panel) from integration of all patches on field 

of views. 

© 2020 Elsevier B.V. All rights reserved. 

1

i

s

(

p

t

m

(  

g

t

b  

2  

L  

q

s

y

o

h

1

. Introduction 

Computed tomography (CT) of the abdomen is an essential clin- 

cal tool in diagnostic investigation and efficient quantitative mea- 

urement for internal organs, bones, soft tissue and blood vessels 

Hsieh et al., 2019). CT allows for identification of structures in 

ossible abnormalities and tumors. To explore complicated spa- 

ial relationship between abdominal organs and tissue structures, 

ulti-organ segmentation on CT scans has been widely studied 

 Wolz et al., 2019 ; Xu et al., 2015). Manual annotations are re-
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arded as gold standard ( Simpson et al., 2019 ), but these are 

ime and resource intensive. To reduce the manual efforts, atlas- 

ased methods ( Aljabar et al., 2009 ; Liu et al., 2017 ; Wang et al.,

012 ; Xu et al., 2014 ) and deep models ( Ronneberger et al., 2015 ;

ong et al., 2015 ; Zhang et al., 2018 ) have been proposed to achieve

uantitative organ segmentation from the clinically acquired CT 

cans automatically ( Xu et al., 2016 ). 

CNN based models are widely explored for medical image anal- 

sis. From the perspective of computation resource-accuracy trade- 

ffs, 2D approaches take separated slices for training result in lack- 

ng spatial information, but faster at approximately batch size of 8 

nd 700 iterations per minute ( Lai et al., 2015 ). The tri-planar ar- 

hitecture ( Moeskops et al., 2016 ) performs better than 2D with 

https://doi.org/10.1016/j.media.2020.101894
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101894&domain=pdf
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dvantage of three views for each voxel at approximately batch 

ize of 3 and 200 iteration per minute. The 3D architecture needs 

cans to be either 1) patched or 2) down-sampled, it is the slow- 

st way to train at approximately 80 iterations per minute and 

ne patch per iteration. Recently, CNN methods have been ex- 

lored to 3D segmentation, which perform abdominal segmenta- 

ion with 3D volumes, like 3D U-Net ( Çiçek et al., 2016 ) or V-Net

 Milletari et al., 2016 ). However, we cannot directly fit the clini- 

ally acquired high resolution CT (e.g., 0.8 mm or higher isotropic 

oxel size) to such networks due to the memory restriction of 

revalent GPU. In this context, ( de Brebisson et al., 2015 ) proposed 

 network to learn 2D or 3D patches along with volume coordi- 

ates for 3D segmentation. One key observation is that the patch- 

ased methods ( Coupé et al., 2011 ; Bai et al., 2013 ; Asman et al.,

013 ; Zhang et al., 2012 ; Yang et al., 2016 ) in high-resolution ap-

roaches tend to underperform given a lack of broad spatial con- 

ext. Huo et al. (2019) demonstrated that the patch-based method 

or whole brain segmentation, to deal with the local anatomical 

ariation based on registered atlases. 

Unlike brain segmentation, abdomen CT do not have a well- 

stablished registration method for standard space due to larger 

ariations in soft tissues among subjects. Thus, removing spatial 

ontext of a high dimensional volume by cropping images leads to 

 loss of relevant knowledge for abdominal segmentation. A sec- 

nd way for implementing 3D training is to down-sample the im- 

ge to low resolution volume ( Çiçek et al., 2016 ). However, this ap-

roach introduces fuzzy interpolation operations that will break bi- 

logic structures in medical images. Holger et al. proposed hierar- 

hical method ( Roth et al., 2017 ), which introduced a coarse-to-fine 

trategy that significantly improved the performance of pancreas 

egmentation. Holger et al. also proposed the multi-scale pyra- 

id network ( Roth et al., 2018 a) that extend the hierarchical strat- 

gy to multi-stage learning. The input images are scaled at differ- 

nt levels, and predictions by last level can be selectively empha- 

ized. However, the performance of scaled images may miss voxels 

ue to inaccurate bounding box predicted by lower level models. 

dditionally, the output segmentations from upper levels present 

igher resolution but it still needs to be up-sampled to original 

pace. 

Currently, most prevailing deep learning frameworks on med- 

cal image segmentation are focused on similar backbones: FCN 

 Long et al., 2015 ), U-Net ( Ronneberger et al., 2015 ) and Fast R

NN ( Girshick et al., 2015 ). In practice, the tri-planar architec- 

ure aims to collect combinations of three-view slices for each 

oxel, and a 3D approach employs a 3D CT scan represented by 

 sequence of 2D slices. One of the first 3D models was intro- 

uced by Urban et al. (2014) to segment brain tumors with varying 

ize. The intuition was followed by multi-scan, multi-path mod- 

ls ( Kamnitsas et al., 2015 ; Chen et al., 2018 ) to capture subsam-

led features of the image. To exploit 3D context and to cope with 

imitation of computational resource, researchers investigated hier- 

rchical frameworks. They attempt to extract features at multiple 

esolution levels. Roth et al. (2015) proposed a hierarchical archi- 

ecture to perceive multi-scale information in pancreas segmenta- 

ion. Chen et al. (2018) aims to simulate human behaviors and gen- 

ralize RNN to employ 3D context. These approaches provide han- 

ling of different field of views at multiple levels, which reduces 

roblems in both spatial context and low-resolution segmentation. 

More works have been done on coarse-to-fine methods on 

bdominal organ segmentation. Li et al. (2018) proposed hy- 

rid densely connected UNets, which learns 2D intra-slice fea- 

ures in the first stage then concatenates 3D contexts in the sec- 

nd stage. However, the connected 3D contexts are still down- 

ampled volumes, which limits in preserving high-resolution de- 

ails. Zhou et al. (2017) developed an FCN based fix-point model 

o learn both the rough pancreas location and fine segmentation. 
2 
ut it only considered coarse-to-fine regions regardless of over- 

ap regions, which is not optimized for spatial predictions. Sim- 

larly, Roth et al. (2017) proposed a hierarchical method, which 

ntroduced a coarse-to-fine strategy that significantly improved 

he performance of pancreas segmentation. However, by constrain- 

ng rough pancreas locations, the method might be vulnerable to 

ose information. Roth et al. (2018 a) extended the coarse-to-fine 

ethod to multi-scale pyramid networks. The input images are 

caled at different levels, and predictions by last level can be se- 

ectively emphasized. However, the performance of scaled images 

ay still miss voxels due to inaccurate bounding box predicted by 

ower-level models. Zhu et al. (2018) proposed an effective sliding 

indow approach, performing 3D pancreas segmentation in two 

tages from both entire CT volume and sub-volumes. In addition, 

hu et al. (2018) used the expanding bounding box to improve 

he robustness for covering target regions. This approach adjusts 

any outliers in the experiment, but it still may suffer from catas- 

rophic failures in the coarse stage. In summary, current state-of- 

he-art coarse-to-fine method for abdominal organ segmentation 

till needs down-sampling in the training and testing and might 

e vulnerable to failure localization in the coarse stage. To address 

hese issues, we focus on proposing effective patch-based method 

ithout isotropic interpolation in the fine stage, while protecting 

atches from losing target information. Herein, we propose a con- 

ise coarse-to-fine framework named random patch network fu- 

ion (RPNF), design to alleviate the difficulties for 3D multi-organ 

egmentation. The method presents two advantages comparing to 

tate-of-the-art methods. 

To deal with the anatomical variance from medical images, 

atches are widely employed to handle the high dimensionality 

ssue ( Coupé et al., 2011 ; Bai et al., 2013 ; Zhang et al., 2012 ;

uo et al., 2019 ; Wang et al., 2013 ; Schlegl et al., 2019 ; Wang et al.,

019a ). Schlegl et al. (2017) proposed a patch-based method on 

etina images. For medical image segmentation, 3D patch-based 

ethods are used in many applications ( Eskildsen et al., 2012 ; 

sman et al., 2015 ; Wang et al., 2019b ). In these methods, patches

re represented as structural tiling architectures. Each individual 

egion within patch follows fixed pattern over a pre-defined crop- 

ing displacement. Ding et al. (2016) proposed translational data 

ugmentation, which employed shifts at each sampling point. The 

esulting performance exploited advantages of successive shifts 

nd yields to final result with concatenation. However, these 

ethods are dependent on manually defined landmarks or ex- 

ra labels. To break the fixed definition, Cheheb et al. (2017) , 

iang et al. (2001) evaluated the benefit of random features for 

atch-based segmentation, which provided a robustness analysis to 

atch-based methods. Coupe et al. proposed an ensemble method 

 Coupé et al., 2019 ) based on a large number of CNNs processing 

or different brain areas. The assembleNet ( Coupé et al., 2019 ) in- 

roduces sharing of knowledge among multiple U-Nets and assem- 

les result with high-resolution predictions by majority voting. 

Herein, we propose a concise coarse-to-fine framework named 

andom patch network fusion (RPNF), design to alleviate the diffi- 

ulties for 3D multi-organ segmentation. The method presents two 

dvantages comparing to state-of-the-art methods. 1) it enables 

egmentation in original CT resolution without image scaling in 

he input and output. 2) it performs robustness to save the catas- 

rophic failures from the coarse stage. The method enables seg- 

entation in original CT resolution by a two-stage cascade design. 

he proposed strategy is built on the concept that the performance 

f a higher resolution level in hierarchical model is indicative 

f the low-resolution level in hierarchy. To validate the proposed 

trategy, experiments on baselines methods are performed, includ- 

ng low-resolution ( Çiçek et al., 2016 ), high-resolution ( Coupé et al., 

011 ) and multi-scale pyramid models ( Roth et al., 2018 a). For 

he family of patch-based method, we evaluate different strate- 
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Fig. 1. Method framework. Given a CT scan with at high resolution of ~0.8 x ~ 0.8 x ~2 mm, a low-res section (left panel) is trained with multi-channel segmentation. 

The low-res part contains down-sampling and normalization in order to preserve the complete spatial information. After the coarse segmentations are acquired from low- 

res UNet, we interpolate the mask to match the image’s original resolution. Next, random patch sampling (mid panel) is employed to collect patches, and patches are 

concatenated with corresponding coarse segmentation masks. Finally, we trained a patch-based high-res (right panel) segmentation model, the high-dimensional probability 

maps are acquired from integration of all patches on field of views. Majority vote is used to merge estimates into a final segmentation. 
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ies including structural tiling, random shifting and combined ap- 

roaches. We perform sensitivity analysis in terms of patch num- 

ers, as well as the ablation studies on behalf of averaged cover- 

ges per voxel and the effect of variant patch size. We present our 

tudy on the dataset from “Multi-Atlas Labeling Beyond the Cranial 

ault” (BTCV) Challenge of MICCAI 2015. For external validation, 

e evaluate our method on two cohorts that were excluded from 

raining, the ImageVU pancreas with 40 subjects and HEM1538 

ith 82 subjects. 

To summarize, the contributions of this work are: 

(1) We proposed a new coarse-to-fine framework termed ‘ran- 

dom patch network fusion’ by introducing randomly local- 

ized patches between first and second stage. 

(2) We show that our proposed method can be implemented to 

predict original space segmentation in second level model. 

(3) We provide large-scale validations on analyzing patch-based 

strategies and comparing them with our method, supporting 

that patch-based method plus random shifting could boost 

3D segmentation performance. 

. Theory 

The proposed method for abdominal segmentation consists of 

hree main components: (1) a 3D multi-organ U-Net that produces 

oarse, preliminary segmentations, (2) a random patch sampling 

rocess which imposes constraints of the field of view, and (3) a 

econd stage model followed by statistical fusion to achieve final 

egmentation ( Fig. 1 ). The approach combines convolutional neu- 

al networks, hierarchical models and statistical fusion. For training 

he subject image i , given Hounsfield Units of voxels, the goal of 

he random patch network fusion algorithm is to estimate the seg- 

entation S using observed labels s ′ from voters V i . Consider the 

ramework as a hierarchical model with two stages l and h . At each 

evel, let S m 

= ( S l , S h ) be the mapping vector that corresponds to 

abels at each level of segmentation. Let s ∈ L , Y m 

= ( Y l , Y h ) be

he collection of ground truth at the m level of hierarchy. The en- 

ire problem definition of our goal is to estimate the segmentation 
3 
uch that: 

( V ij = s ′ | Y i = s, S , θ ) (1) 

here voters V for each voxel j observes label s ′ given the ground 

ruth Y , hierarchical model S , the parameters of each model θ . 

.1. Stage 1: preliminary segmentation 

The labeled data i represents the original resolution CT scan. 

 is the down-sampled volume using tri-linear interpolation. 

onsider the segmentation network parameterized by θ . Low- 

esolution training aims to: 

rgmin 

θl , Y l 

L D l ( θl ) (2) 

here L D l ( θl ) is the Multi-Sourced Dice Loss (MSDL) ( Tang et al., 

019 ). MSDL was proposed as a way of evaluating datasets with 

arying labels with a single score by extending the Dice loss 

 Sudre et al., 2017 ) to adapt unbalanced multi-organ segmenta- 

ion,: 

 D l = − 2 

A 

∑ A 
a =0 w 

∑ M 

i =1 

∑ N 
j=1 Y ij P ij + ∈ 

∑ A 
a =0 w 

∑ M 

i =1 

∑ N 
j=1 Y 

2 
ij 

+ 

∑ A 
a =0 w 

∑ M 

i =1 

∑ N 
j=1 P 

2 
ij 

+ ∈ 

(3) 

here A denotes the number of anatomies and w represents the 

ariance to different label set properties in given image dimension 

f M and N . Y is the voxel value and P are the predicted probability

aps. A small number, ∈ , was used in computing the prediction 

nd voxel value correlation to prevent discontinuities. MSDL was 

teratively optimized, and P ij was computed by the softmax of the 

robability of voxel j in image i to anatomy. 

.2. Stage 2: random patch sampling 

We proposed an approach that is inspired by hierarchical 

lgorithms ( Asman and Landman, 2014 ) and random sampling 
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Fig. 2. Representative random patches for 12 abdominal organs of a single subject. The patch size is 128 × 128 × 48 and 8 samples are shown for each anatomy. Patch size 

defines the volume of field of view corresponding to organs. Large organs like spleen, liver and stomach cannot be covered until a number of patches are sampled, the patch 

of 128 × 128 × 48 covers most regions of mid-sized organ (kidney, pancreas, and portal & splenic vein), while small anatomies (adrenal glands, gallbladder, and vessels) can 

be covered by single patch with above size. The patch size effect is explored in an ablation study. 
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 Cheheb et al., 2017 ). We randomly select predicted voxels in the 

oarse segmentation mask according to the distribution. Using the 

elected voxel as indices’ center, we place a bounding box as the 

ocal field of view. In order to introduce randomness, we also add 

 random shift to all axes’ direction by the distribution. The dis- 

ance of shifting is given by Gaussian random number generator, 

he mean and variance of the norm is determined by the mean 

istance of centers indices (e.g. the spleen patches have the mean 

istances of 4.2 and variance of 2.3 in x axes direction, the shifting 

istance to x direction is generated by the Gaussian random num- 

er generator). Patches are cropped according to bounding boxes 

s second stage model inputs as shown in the middle panel of 

ig. 1 . The strategy crops CT scan at original resolution without re- 

ampling, and it builds the hierarchy of non-linear features from 

andom patches regardless of 3D contexts. The method employs 

etail context at original resolution and incorporates advantages of 

ata augmentation with shifting. 

.3. Stage 3: label fusion 

After separating full spatial context to k randomly selected sub- 

paces, patches will overlap with each other. The overlapped re- 

ion could provide more than one segmentation label for a voxel. 

erein, except placing patches back to original coordinate space, it 

s required to summarize a single label given a vector of class la- 

els from n candidates. In this work, we implement label fusion 

ith majority vote algorithm, which fuses n segmentations from 

etwork predictions to a single label. The final segmentation label 

or voxel j in image i is acquired by: 

 ij = argmax 
1 

n 

n ∑ 

m =1 

p(a | s ′ , j) (4) 

here p( as ′ , j ) = 1 if s ′ aquals to anatomy class a and 0 otherwise.

e ignore the voters outside the image space, related values are 

xcluded in the label fusion. For voxels with equal number of vot- 

rs, we label the voxel randomly to either be target or background. 

ncertainty. 

. Methods 

The 3D abdominal segmentation task involves segmentation of 

2 abdomen structures with highly deformable volume and shape. 

natomies present high class-imbalance, which involve large or- 

ans (spleen, liver, stomach and kidneys), vessels (aorta, portal and 

plenic vein, and inferior vena cava (IVC)), and small anatomies 

esophagus, gallbladder, pancreas and adrenal glands). The details 
4 
f each dataset are provided below. a) BTCV dataset: We perform 

e-identified data acquired from the Vanderbilt University Medical 

enter (VUMC) under IRB approval. We retrieved 100 subjects with 

2 labeled anatomies, labels are annotated by experts. We inte- 

rate all 100 subjects in this study, the in-plane pixel dimension of 

ach scan varies from 0.4 to 1.2 mm. Each volume is preprocessed 

y excluding outlier intensities beyond −10 0 0 and 10 0 0 HU. The 

lice thickness ranges from 1 to 6 mm. Each CT scan consists 80 to 

25 slices of 512 × 512 pixels. 100 CT scans are independent from 

ubjects and with contrast enhancement in portal venous phase. 

art of the dataset is released in the MICCAI 2015 Multi-Atlas La- 

eling Challenge, which contains 30 scans with 3779 axial slices 

 Zhou et al., 2019 ). The 12 organs were outlined manually by inter- 

reters under supervision of clinical radiologists (MD) from Van- 

erbilt University Medical Center ( > 10 years of experience in ab- 

omen radiology). For each organ, the interpreter was instructed to 

erify the segmentation slice-by-slice in all axial, sagittal, and coro- 

al views. To avoid inter-rater variability and perform reproducibil- 

ty, we have independent observers perform manual segmentations 

n the same dataset. 

(1) HEM1538 dataset: We retrieved 82 splenomegaly sub- 

jects substantially acquired with clinically trials. 117 

splenomegaly CT scans are included and used as external 

validation ( Huo et al., 2018 ). Splenomegaly indicates the en- 

largement of spleen with different levels of red blood cell 

destruction and inflation. These scans have large variance of 

spleen shape, which size varies from 143 cubic centimeter 

(cc) to 3045 cc. Each CT volume consists of 60 to 200 slices 

of 512 × 512 pixels, with resolution of ([0.59 × 0.59] mm to 

[0.98 × 0.98] mm). The slice thickness ranged from 1 mm to 

2 mm. For each case, the spleen is manually annotated and 

reviewed by a radiologist. 

(2) ImageVU pancreas: 

A total of 40 subjects were selected and retrieved from Van- 

erbilt University Medical Center (VUMC). The dataset is collected 

rom a group of 40 outliers out of 598 retrieved subjects. These 

utlier-guided subjects were a collection of studies that evaluated 

ith benefits for rare/in-frequent population. The pancreas was 

anually traced for each subject under a soft tissue window. 

(1) Patches for organs 

To illustrate the random patch definition, we show the sam- 

led patch field of views in Fig. 2 , which are acquired from BTCV 

ataset, 12 annotated anatomical structures are shown. 



Y. Tang, R. Gao, H.H. Lee et al. Medical Image Analysis 69 (2021) 101894 

Fig. 3. Quantitative results from the testing cohort: spleen to liver (50 patches used). We compare our random patch network fusion method with three baseline approaches 

(high-res, low-res and hierarchical framework). The high-res method presents result with large variance and outliers in boxplot due to limited field of view in each patch. The 

low-resolution segmentation performs better than high-res method in mean DSC, which indicates complete spatial information is essential in abdominal organ segmentation. 

The hierarchical approach increases training resolution in the second step and achieved higher DSC. Hierarchical method’s performance is limited when bounding box 

is inaccurate from previous levels. Our method achieves overall highest result compared to hierarchical method with significant improvement, “∗” indicates statistically 

significant ( p < 0.01 from paired t -test). The random patch fusion framework employs advantages from both low-res and high-res settings, and it achieves segmentation 

without resample postprocessing. In boxplot, small anatomies (gallbladder, esophagus) presents higher improvements than large organs (spleen, kidneys and liver), which 

presents higher median DSC, smaller variance and fewer outliers. 
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.1. Preprocessing and body part regression 

We processed CT scan with soft tissue window with range of 

 −175, 250] HU. Intensities were normalized to [0,1]. Clinically ac- 

uired CT scans can exhibit large variance in volume size, we adopt 

 critical pre-processing with body part regression ( Yan et al., 

018 ; Rousseeuw et al., 2005 ). The body part regression helps to 

emove slices on inconsistency volumes, and to localize anatomical 

egions automatically. We used the pre-trained model from unsu- 

ervised regression network ( Yan et al., 2018 ) to navigate slices in 

bdomen region (scalar reference index ranges from −6 to 5). 

.2. Baseline architectures 

We compared our random patch network fusion framework 

ith a series of state-of-the-art approaches, including 1) low- 

esolution model on down-sampling images to fit maximum 

PU memory, 2) high-resolution architecture with complete tiling 

atches, and 3) hierarchy with two-level pyramids. 

.3. Low-resolution architecture 

The 3D U-Net is trained on images with finest resolution to 

ouse the maximum GPU memory. Each scan is down-sampled 

rom [512, 512] to [168, 168] and normalized to consistent voxel 

esolution of [2 × 2 × 6]. The output and ground truth labels 

re compared using MSDL. We ignored the background loss in 

rder to increase weights for anatomies. The final segmentation 

aps are up-sampled to original space with nearest interpolation 

 Olivier et al., 2012 ) in order to spatially align with CT resolution.

his approach is trained end-to-end, and the resulting segmenta- 

ion is summarized in Figs. 3 and 4 . Qualitative results are shown 

n Fig. 5 and Fig. 6 . The low-resolution framework incorporated 
5 
own-sampled volume which lacks detail structures of anatomies, 

ut it preserves complete spatial context in CT scan. 

.4. High-resolution architecture 

The image is normalized to 1 mm isotropic resolution with di- 

ension of 512 × 512. Since the high-resolution volume cannot be 

ed into GPU given structure of 3D U-Net, we employed k patches 

ile to cover full CT space. The patch number k for each image 

s based on equal distribution that continually tiles in x, y, and 

 axes. Each image is split to 32 patches along with the dimen- 

ion, each patch covers a subspace. To maximize the usage of GPU 

emory, we use patch volume with [168 × 168 × 64] voxels. The 

ubspace can be presented by coordinate ( x , y , z ) and patch size 

 d x , d y , d z ). 

 k = [ x k : x k + d x , y k : y k + d y , z k : z k + d z ] (5) 

Patches are extracted without overlaps, each patch is padded 

o fixed size once it exceeded the volume dimension. For 3D U- 

et, we adjust the decoder section upon original 3D U-Net im- 

lementation to be compatible with 12 labels prediction. 12 out- 

ut channels are employed in the de-convolutional layers in the 

odel. We also presented the overlapped patch strategies analyzed 

n Fig. 7 . The half-overlapped patches covered half volume of sub- 

paces, one-third overlapped patches cover one-third volume of 

ubspace, etc. The effect of mean number of coverages per voxel is 

nalyzed in Section 4.2. The high-resolution method is evaluated 

nd-to-end, and final segmentation masks are acquired by tiling 

rdered patches. 

.5. Hierarchy with multi-scale pyramid network 

To effectively segment an image at higher resolution, we com- 

are our method with the multi-scale auto-context pyramid ap- 
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Fig. 4. Quantitative result for the testing cohort: stomach to adrenal glands (50 patches used). “∗” indicates our method outperforms hierarchical method by statistically 

significant improvement ( p < 0.01 from paired t -test). 
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roach ( Roth et al., 2018 a). The method both captured spatial in- 

ormation at lower resolution down-sampled images while learned 

ccurate segmentation from higher resolution in multiple levels. 

 = { ( f m 

( X m 

, θm 

) ) , m = 1 , . . . M } , with m the order of levels in 

he approach. X m 

is the subspace at level m . In the first level, 

he 3D U-Net is trained the same as low-res network, which em- 

loyed lowest resolution to fit largest amount of spatial infor- 

ation. In the next levels, it uses the predicted segmentation 

asks as an input channel to the next network. The succeeded 

nput volume is cropped according to bounding box define by 

redicted segmentation map in level m − 1 . And down-sampled 

y a factor of d m 

= d m 1 / 2 . The previous level’s segmentation is 

p-sampled by 2 in order to align with higher resolution levels. 

D U-Net at each level is optimized using Dice loss as the same 

it low-resolution training. The predicted segmentation masks and 

ropped images are concatenated as the next level input. The fi- 

al segmentations are acquired by interpolating the last level pre- 

iction and match the cropped images to original coordinates. In 

ur implementation, we trained the pyramid models with two 

evels. 

.6. Implementation details 

We adopt 3D U-Net as the segmentation model, which contains 

ncoder and decoder paths with four levels resolution. It employs 

econvolution to up-sample the lower level feature maps to the 

igher space of images. This process enables the efficient denser 

ixel-to-pixel mappings. Each level in the encoder consists two 

 × 3 × 3 convolutional layers, followed by rectified linear units 

ReLU) and a max pooling of 2 × 2 × 2 and strides of 2. In the de-

oder, the transpose convolutions of 2 × 2 × 2 and strides of 2 are 

sed. And followed by two 3 × 3 × 3 convolutions, followed with 

eLU. 3D U-Net employs skip connectors from layers of same level 

n the decoder to provide higher-resolution features to the decoder 

art. The last layer is a 1 × 1 × 1 convolution that set the number

f output channels to the number of class labels. We used Multi- 
6 
ourced Dice Loss and Dice Loss for multi-organ segmentation and 

ingle class segmentation respectively. 

The baseline low-resolution multi-organ segmentation uses the 

argest volume size of 168 × 168 × 64 in order to fit maximum 

emory of a normal 12GB GPU under architecture of 3D U-Net. 

he volume size is also employed in baseline hierarchical method 

or training the first level model. For patch-based segmentation, we 

rstly chose the medium size of [128,128,48] for experiments, the 

ffect of different size of patch is evaluated in ablation study, pre- 

ented in Figs. 8 and 9 . 

To fairly compare methods, the same 3D U-Nets is used with 

ame hyper-parameters except input dimension and channels. We 

se batch size of 1 for all implementations. We used Instance Nor- 

alization, which is agnostic to batch size. We adopted ADAM al- 

orithm with SGD, momentum = 0.9. The learning rates is set to 

.001 and it reduced by a factor of 10 every 10 epochs after 50th 

poch. Implementations are performed using NVIDIA Titan X GPU 

2 G memory and CUDA 9.0. Training, validation and testing are 

xecuted on a Linux workstation with Intel Xeon CPU, 32GB of 

AM. The code of all experiments including baseline methods are 

mplemented in python 3.6 with anaconda3. Networks and frame- 

orks are implemented in Pytorch 1.0. 

.7. Experimental design 

We conducted experiments on three perspective of analysis to 

valuate the effectiveness of different approaches. First, we com- 

ared state-of-the-art methods with RPNF on multi-organ segmen- 

ation to provide effectiveness. Then, in order to prove robustness 

nd sensitivity, we did three ablation studies to validate the ef- 

ect of 1) patch-based strategies, 2) number of random parches 

er scan and 3) patch size. Last, we tested the trained model on 

wo external datasets to provide stability of the RPFN. All segmen- 

ation comparisons are assessed the average DSC score across 12 

on-background labels. The claim of statistical significance is eval- 

ated by paired t -test ( p < 0 . 01 ). 
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Fig. 5. Same subject qualitative result of our method compared to baseline approaches (spleen to liver). Second and third row presents direct high-resolution and low- 

resolution segmentation, mis-predictions are shown due to limited field of view, and resampling respectively. The hierarchical method presents smoother boundaries but 

suffers from truncation due inaccurate bounding box from first step. Our random patch fusion method presents complete segmentation masks with smoother boundaries 

among structures. 

Fig. 6. The same subject qualitative result of our method compared to baseline approaches from stomach to adrenal glands. 

7 
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Fig. 7. Boxplot and uncertainty curves on patch strategies. The boxplots on the left presents the DSC coefficients on testing scans of baseline hierarchy method compared 

to the complete tiling. Complete tiling shows less variance than baseline hierarchy method. Red diamonds present outliers in complete tiling, and baseline hierarchy shows 

better DSC (green triangles) than complete tiling. Uncertainty plots show means/standard deviations comparison of structural tiling, structural tilling plus random shift and 

only random shift methods along with averaged patches per voxel. This presents DSC of each experiment with averaged covered voxels from 2 to 50. 

Fig. 8. Boxplot on three different patch size along x-y axes. The ablation study conducted on three abdominal organs (spleen, liver and pancreas). Patch size range from 

small (64 × 64 × 48), medium (96 × 96 × 48) and large (128 × 128 × 48). The boxplots show that larger patch sizes perform better than smaller patch sizes. 

Fig. 9. Boxplot on three different patch size along the z-axis. The experiments are conducted on spleen, liver and pancreas with patch size ranging from small 

(128 × 128 × 36), medium (128 × 128 × 48) and maximum (128 × 128 × 64). The boxplots also present that larger number of slices perform better than less in the 

volume. 
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.8. Random patch network fusion 

To perform best effectiveness of the proposed method, we im- 

lemented experiments with maximum number (50) of patches for 

valuating performance of baselines and RPNF. We implemented 

xperiments with 5 fold cross validation on BTCV dataset. To per- 

orm standard five-fold cross validation, we split 100 scans into 

ve complementary folds, each of which contains 20 cases. For 
o

8 
ach fold evaluation, we use 4 folds as training and testing on the 

emaining cases. 

We compared RPNF with three baseline architectures (low- 

esolution, high-resolution and hierarchy) with same dataset and 

arameters on task of multi-organ segmentation. Briefly, we first 

rained the low-resolution approach, which has been shown its ca- 

ability on 3D multi-organ segmentation with full spatial contexts. 

econd, we trained the 3D networks with structural tiles without 

verlapping to evaluate the high-resolution method. In this setting, 
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Table 1 

Mean DSC and variance of 12 abdominal organs compared with our method and three baseline approaches on BTCV miccai2015 challenge testing cohort. Our method 

presented significant improvement compare to Hierarchical method. (p-value < 0.01 with paired t -test). Note: Bold values indicates best mean DSC of each organ. 

Organ High-resolution Low-resolution Hierarchy RPFN (ours) 

1.spleen 0.8732 ± 0.0316 0.9382 ± 0.0244 0.9422 ± 0.0048 0.9635 ± 0.0050 

2.right kidney 0.7675 ± 0.0617 0.8996 ± 0.0180 0.8810 ± 0.0233 0.9310 ± 0.0231 

3.left kidney 0.7579 ± 0.0812 0.8893 ± 0.0141 0.8872 ± 0.0435 0.9453 ± 0.0210 

4.gallbladder 0.3565 ± 0.0896 0.5394 ± 0.0896 0.5014 ± 0.1178 0.8263 ± 0.0348 

5.esophagus 0.6079 ± 0.0139 0.7481 ± 0.0140 0.7582 ± 0.0120 0.7881 ± 0.0120 

6.liver 0.9321 ± 0.0039 0.9558 ± 0.0031 0.9557 ± 0.0072 0.9656 ± 0.0670 

7.stomach 0.6641 ± 0.0247 0.8298 ± 0.0158 0.8267 ± 0.0118 0.8567 ± 0.0118 

8.aorta 0.8540 ± 0.0024 0.9063 ± 0.0241 0.9032 ± 0.0326 0.9232 ± 0.0321 

9.IVC 0.7528 ± 0.0068 0.8285 ± 0.0068 0.8328 ± 0.0192 0.8528 ± 0.0186 

10.P&S veins 0.5778 ± 0.0123 0.6817 ± 0.0145 0.697 9 ± 0.0672 0.7279 ± 0.0670 

11.pancreas 0.5581 ± 0.0265 0.6765 ± 0.0265 0.7209 ± 0.0205 0.7608 ± 0.0535 

12.Ad gland 0.3956 ± 0.0295 0.6321 ± 0.0295 0.6897 ± 0.0642 0.7356 ± 0.0367 
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ocal patches are cropped by pre-defined coordinates, patch size 

emains the same as low-resolution training (168 × 168 × 64). 

o evaluate the coarse-to-fine methods, we trained the two-level 

yramid networks as the third baseline. In the first level, the low- 

imensional representation is used for computational efficiency. 

hen, the input volume is cropped according to bounding box de- 

ne by predicted segmentation map in the first level. The volume 

s down-sampled by a factor of d 2 = d 1 / 2 , which means pyramid 

etworks use higher resolution patches in the second level hierar- 

hy. In this experiment, we evaluate the proposed method on all 

f 12 abdominal anatomies. We aim to show the method can be 

pplied to multiple organs with variant sizes (large organ such as 

iver, and small anatomy such as adrenal gland). Thus, we claim the 

ffectiveness of RPNF on the representative multi-organ dataset. 

.9. Ablation study 

In this section, we evaluated the effect of three key factors that 

nfluence the performance. To simplify the evaluation on patch 

trategies and numbers, we conducted experiments on spleen seg- 

entation as the representative task of abdomen segmentation. On 

valuation of patch size, we performed the experiments on three 

epresentative organs (liver, spleen and pancreas). We performed 

xperiments on the same BTCV dataset with 80 training scans, the 

ithheld 20 cases are split with 10 for validation and 10 for test- 

ng. 

Effect of patch-based strategies: For comparing patch-based 

trategies, we implemented methods of structural tiling, structural 

lus randomness and pure randomness. Briefly, we first employed 

omplete structural tiling. Similar to high-resolution training, we 

ropped the image with fixed coordinates. In the second strategy, 

e start from the structural bounding boxes in the first method, 

hen randomly shift each box in three directions (x, y and z). 

ast, we perform pure random selection of patches instead of pre- 

efined bounding boxes. To perform a fair comparison, the same 

D segmentation network with the same parameters are used in 

xperiments. To be specific, the patch size = 128 × 128 × 48, batch 

ize = 1, optimizer = “Adam”, and learning rate = 0.001. The pre- 

rocessing remains the same for different strategies. 

Effect of average number of coverages per voxel: To further 

valuate patch-based methods, we conducted a large-scale of ex- 

eriments on number of coverages per voxel. We designed exper- 

ments on use of average number of coverages per voxel from 1 

o 50. The structural tiling method is implemented by increasing 

verlapped region with 1/2, 1/3, 1/4, … 1/50. The structural plus 

andomness is performed by shifting overlapped patches randomly. 

ast, the evaluation on the pure randomness strategy is achieved 

y increasing number of random patches until reach the same av- 
9 
rage coverage per voxel as other experiments. We showed the 

nalysis in Fig. 7 . 

Effect of patch size: While patch-based studies achieved 

romising results, there are rare work focused on effect of patch 

ize. Following the current prevailing GPU memory, previous stud- 

es ( Çiçek et al., 2016 ) implemented patch with dimension for max- 

mizing usage of memory (for example: 128 × 128 × 96 vol typ- 

cally occupies 12 GB with 3D U-Net). To better understand the 

ffect of patch size, we evaluated 3D segmentation on three rep- 

esentative abdominal organs, spleen, liver and pancreas. We first 

mployed three different sizes for evaluating dimension of x-y 

xes. Volume size varies from 64 × 64 × 48, 96 × 96 × 48 to 

28 × 128 × 48. Then we performed training on different volume 

ength (128 × 128 × 36, 128 × 128 × 48 and 128 × 128 × 64). 

xcept patch size, other settings remain the same as random patch 

etwork fusion. 

.10. Validation on external datasets 

To show the stability of the proposed method, we validate the 

rained model on two independent cohorts (HEM1538 and Im- 

geVU pancreas). We implemented the model of RPNF and baseline 

pproaches on all subjects in these two unseen datasets. For eval- 

ation of HEM1538, we aim to present the stability of our model, 

hich trained on normal spleen and test on splenomegaly cases. 

or ImageVU pancreas, we compare the performance on outlier- 

uided study with academic controlled dataset. The same prepro- 

essing and patch selections are used in the validation correspond 

o each model. Except the proposed PRNF method, the output seg- 

entation volumes from other models were resampled back to the 

riginal image space. 

.11. Evaluation metrics 

We used the Dice similarity coefficients (DSC) as the measure- 

ent for our method and baseline approaches, 

SC = 

2 | A ∩ M | 
| A | + | M | = 

2 | T P | 
2 | T P | + | F P | + | F N | (6) 

here T P is true positive, F P is false positive, F N is false a negative.

he statistical measurement between methods were evaluated by 

aired t -test and the difference was significant when p < 0 . 05 . 

. Results 

.1. Random patch network fusion 

In Fig. 3 , the quantitative boxplot shows the proposed random 

atch network fusion method with 12 anatomies’ labels achieved 
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uperior performance compared with baseline methods on met- 

ic of DSC scores. Table 1 reports mean DSC scores and standard 

eviation. As shown in Table 1 , our proposed framework achieves 

tate-of-the-art method “Hierarchy” ( Roth et al., 2017 ) by a large 

argin. For large organs, our RPFN achieves 0.963 against 0.942 

spleen), 0.965 against 0.955 (liver), 0.856 against 0.826 (stomach), 

hich are around advancement of 1.5%. In comparison of mid- 

le sized organ, our methods achieve 0.931 vs 0.881 (right kid- 

ey), 0.945 vs 0.887 (left kidney), 0.788 vs 758 (esophagus), 0.923 

s 0.903 (aorta), 0.853 vs 0.833 (IVC), 0.761 vs 0.721 (pancreas), 

hich are around 3% advancement. Regarding of small tissues, our 

ethod achieves 0.826 vs 0.501 (gallbladder), 0.728 vs 0.698 (por- 

al and splenic vein), 0.736 vs 0.690 (adrenal glands), which in- 

reases by a large margin. 

Fig. 3 indicates our method achieved significant improvement 

ith paired t -test of p-value < 0.001, compared with performance 

f the state-of-the-art two-level hierarchy. In Fig. 3 , the DSC scores 

f high-resolution methods are the lowest since local patches re- 

ult in holistic information. Unlike patch-based method in brains 

 Huo et al., 2019 ), abdomen CTs do not have registration step to

lleviate the bias and variance in patients, which indicates intensi- 

ies in patches are not scaled and normalized. Herein, we observed 

hat soft structures such as stomach and pancreas show large std 

DSC score) in Figs. 3 and 4 . 

A similar result happens in large structure, liver and spleen, 

ince the segmented tiled patches contain outliers. On perfor- 

ance of low-resolution model, we see an improvement for all 

tructures compare to high-resolution model, which indicates that 

patial contexts are essential for 3D segmentation. As full context 

rovides complete shape and background knowledge to training 

odel, the low-resolution model shows smaller standard devia- 

ion in Table 1 . The limitation of the low-resolution method comes 

rom the tri-linear and nearest interpolation during downsample- 

psample steps. Small structures, gallbladder, adrenal glands are 

ith limited number of voxels in low-resolution volume, the pre- 

icted segmentation will not memorize the shape structure after 

p-sampling with nearest interpolation. In hierarchy approach, we 

mplemented multi-scale pyramid network with two levels, the re- 

ult present in gray boxes in Figs. 3 and 4 . The hierarchical ap-

roach shows general better DSC scores than low-res model by in- 

orporating spatial context in first level and higher resolution con- 

ext in second level. The final segmentation result relies on the 

ounding box predicted by outputs in previous level. We observe 

hat cases may miss part of structure due to cropping with inac- 

urate bounding box, as presented in qualitative result ( Fig. 5 ). The 

ncertainty of boundaries results in amounts of outliers especially 

n segmenting soft structures (such as stomach and pancreas). 

erein, the boost in DSC score for these structures are marginal 

or the hierarchical approach. The random patch network fusion 

resents overall higher DSC scores on all structures. We see a high 

mprovement of ~30% DSC score for gallbladder. Adrenal glands 

lso present large improvements, these small structures benefit 

reatly since a single random patch will cover entire structure, and 

he random patch works as data augmentation scheme while ben- 

fits with assembled result with label fusion. The random patch fu- 

ion network utilized advantages from all the baseline approaches, 

) complete spatial context in low-resolution model, 2) detailed 

eature of structures in high-resolution model and 3) coarse atten- 

ion mechanism provided by multi-scale architecture. Additionally, 

he second step of our method predicts masks in original CT space, 

hich indicates no re-sampling step needed for final segmentation 
esult. v  

t

c

w

p

10 
.2. Ablation study 

.2.1. Effect of patch-based strategies 

Hierarchy vs complete tiling: We present the results of 3D 

pleen segmentation by two patch-based baselines in left panel 

f Fig. 6 , which is the two-level hierarchy method and complete 

iling. The two-level hierarchy approach used the same patch con- 

guration in the second step as complete tiling. Patch size of 

128,128,48] is used for both experiments. The implementations 

re conducted with averaged patches per voxel of 1, which indi- 

ates no overlapped patches. In Fig. 7 , we observed similar scenario 

s high-resolution experiment, the mean DSC score is lower than 

ierarchical method. This effect is probably due to complete tiling 

ct only on local patches, which lacks holistic context. The unsatis- 

ed performance of the tiling patches presents two reasons. First, 

ompare with hierarchical method, complete tiling contains unre- 

ated patches without target. Second, the large variance of target 

resent unbalanced intensity distribution. 

Structural tiling vs random shift: In this section, We evalu- 

ted translational data augmentation techniques. The right panel of 

ig. 7 compares structural tiling, structural tiling plus random shift, 

nd only random shift strategies. The structural tiling means adja- 

ent patches cropped along axes such as complete tilling. With the 

ncreasing of average covered voxel, we shift the tiled patches to be 

verlapped by half, 1/3, 1/4, etc. The structured shifting was imple- 

ented in three dimensions (x, y and z axes) in order to balance 

patial context for augmentation. The gray dash line in Fig. 7 indi- 

ates performance of structural tiling and random shift. From tiled 

atches, we implemented Gaussian random shift upon structural 

atches. This method involves moving the image randomly along 

he x, y, and z direction, which enables network to ignore absolute 

ocation of targets. 

.2.2. Effect of average number of coverages per voxel 

We point out that patch-based approaches’ performance is par- 

ially influenced by number of overlapping region of interests. To 

in-point the gain of increasing number of patches, we conducted 

arge-scale of experiments on spleen by using coverage of 2 per 

oxel to 50 for each patch strategy. For structural tiling, the num- 

er of coverages per voxel is calculated by overlapping tiles. For 

andom shifting, we count the mean coverages per voxel as the 

ame with structural tiling. In Fig. 7 . These competitors perform 

ecently when number of coverages reach 10 and more. Curves 

epresent the mean DSC of each experiment, while the shading 

rea indicates variance. 

Interestingly, the performance of random shift is higher than 

tructural tiling when n is less than 15. For n larger than 15, the 

ffect of random shift is less influential compared with pure struc- 

ural tiling. Herein, we conclude that translational data augmenta- 

ion is comparable to random shift effect when averaged patches 

er voxel reaches a large number. 

.2.3. Effect of patch size 

Fig. 7 shows the results on dimension of 64/96/128. With the 

ncreasing of the scheduled dimension, all models perform bet- 

er DSC, as indicated by larger spatial context. Big patches contain 

roader spatial context with consistent intensity distribution and 

race of boundaries. Then, we conducted experiment on increasing 

f slice numbers. With the fixed x-y dimension of 128, we changed 

olume length from 36 to 64 shown in Fig. 8 , it’s no supervise that

he performance follows similar result in x-y dimension. We con- 

lude that 3D U-Net is capable to capture local features in patch 

ith larger size, with the current computational resource, larger 

atch is better than small patches in segmentation metric. 
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Fig. 10. Qualitative result of three representative subjects. From low to high, we show the segmentation result evaluated by our method. The testing performance on external 

datasets (top: HEM1538-splenomegaly, bottom: ImageVU-pancreas outliers). 

Table 2 

Segmentation performance of models trained on BTCV dataset in Mean DSC and 

variance, tested on HEM1538 and ImageVU pancreas, the proposed method is 

compared with baselines (p-value < 0.01 with paired t -test between random 

patch network fusion and two-level hierarchy). 

HEM1538 (spleen) ImageVU (pancreas) 

Vol DSC Std Vol DSC Std 

High-resolution 0.9134 0.0283 0.5046 0.0711 

Low-resolution 0.9268 0.0211 0.5537 0.0513 

Two-level Hierarchy 0.9493 0.0189 0.5782 0.0548 

Random Patch network fusion 0.9672 0.0143 0.6019 0.0423 

Note : Bold cases indicates best mean DSC. 
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.2.4. Validation on external datasets 

In this evaluation, we investigated two clinical scenarios in- 

tead of research subjects. We adopt the model trained on 

he BTCV dataset and tested on external cohort with HEM1538 

splenomegaly) and ImageVU (pancreas). which are manually la- 

eled by experts. Results are shown in Table 2 and Fig. 10 . 

HEM1538: The quantitative performance on HEM1538 is pre- 

ented in Table 2 . We implemented the same comparison exper- 

ments with low-resolution, high-resolution and multi-scale hier- 

rchy. The mean Dice similarity coefficient (DSC) is calculated for 

ll testing scans in HEM1538. The multi-scale hierarchy method 

chieves best DSC among baseline approaches and was used as 

 reference method. Our proposed random patch network fusion 

odels perform better than multi-scale hierarchy as presented in 

oxplot with significant improvement ( p < 0 . 01 , paired t -test). As

EM1538 is a pathology cohort with extra large spleens, we prove 

hat RPFN could effectively preserves the stability on generalizing 

nowledge from normal spleen to splenomegaly. 

ImageVU pancreas: In this study, we introduced an outlier- 

uided cohort since clinically acquired scans contain hard cases 

mong population. The quantitative result is presented in Table 2 , 

he mean volume DSC showed the detailed measurement for all 

ethods, which showed that the proposed RPFN with 50 patches 
11 
nd majority vote achieves superior performance compared with 

he two-level multi-scale hierarchy with ( p < 0 . 01 , paired t -test

ith mean DSC). 

.3. Comparison of state-of-the-art methods 

.3.1. Coarse-to-fine methods 

Our model is compared with other state-of-the-art coarse-to- 

ne networks. The results are in Table 3 . Roth et al. (2017) used

ierarchical 3D fully convolutional networks (FCN) with two stages. 

hou et al. (2017) developed a fix-point model for small organ 

egmentation. Li et al. combined 2D and 3D FCNs for hierarchi- 

ally aggregating volumetric contexts. Zhu et al. (2018) proposed a 

ovel 3D coarse-to-fine framework that achieved promising result 

n pancreas segmentation. For each method, we trained 12 mod- 

ls for 12 organs. Comparing with these state-of-the-art coarse- 

o-fine methods, our work achieves a consistent higher DSC. The 

verage Dice of our method is 0.8564, compared to 0.7920 (Roth 

t al.2017), 0.8138 (Zhou et al.2018), 0.8176 ( Li et al., 2018 ), 0.8328

 Zhu et al., 2018 ), respectively. 

.3.2. Patch selection methods 

We implemented different patch selection strategies used in ab- 

ominal organ segmentation. To fairly conduct the evaluation, we 

sed 3D UNet as the segmentation model for all methods. All ex- 

eriments are implemented using the same BTCV dataset on 12 

rgans. As shown in Table 4 , we compared five different strate- 

ies with our method in addition to the ablation study. The evalua- 

ion metric employed in these experiments includes the mean sur- 

ace distance, Dice scores, and Hausdorff distance. In comparison 

f single-stage model, patches selected with overlap perform bet- 

er than tiles without overlap. In comparison of two-stage model, 

e evaluated the fine-stage performance using fine-scaled, sliding 

indow, and our random patch method. The average Dice of our 

ethod is 0.8564, compared to 0.8297 ( Zhu et al., 2018 ), 0.7991 

 Roth et al., 2018 b), respectively. 
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Table 3 

Comparison of coarse-to-fine methods between our proposed approach and state-of-the-art methods. The evaluation is conducted on BTCV testing dataset in terms of mean 

DSC. 

Methods spleen R Kid L Kid Gall Eso liver Sto aorta IVC Vein Pan AG All 

Roth et al. (Roth et al. 2017) .926 .884 .889 .531 .724 .953 .819 .884 .823 .687 .720 .664 .792 

Zhou et al. (Zhou et al. 2018) .941 .918 .932 .603 .753 .964 .842 .907 .820 .689 .722 .675 .814 

Li et al. ( Li et al., 2018 ) .957 .917 .924 .636 .760 .963 .840 .901 .821 .697 .726 .669 .817 

Zhu et al. ( Zhu et al., 2018 ) .961 .928 .932 .693 .772 .964 .849 .913 .837 .698 .762 .684 .833 

Ours .963 .931 .945 .826 .788 .966 .857 .923 .853 .728 .760 .736 .856 

R Kid: right kidney, L Kid: left kidney, Gall: gallbladder, Eso: esophagus, Sto: stomach, IVC: inferior vena cava, Vein: portal and splenic veins, Pan: pancreas, AG: adrenal 

gland. 

Table 4 

Fine stage performance comparison with state-of-the-art methods on patch selection strategies using same backbone network (3D UNet). The evaluation is performed on 

BTCV testing data on 12 abdominal organs in terms of mean and variance. 

Methods Mean Surface Distance Vein Pan AG Average Dice Hausdorff Distance 

Local patches (tiling no overlap) 6.6129 ± 3.1458 0.6748 ± 0.0670 52.1484 ± 31.9348 

Local patches (tiling 1/2 overlap) 5.5195 ± 3.0981 0.7075 ± 0.0664 47.2357 ± 26.7541 

Kim et al. (kim et al., 2020) (uniform crop) 5.4912 ± 3.0385 0.7493 ± 0.0659 45.0924 ± 27.1705 

Roth et al. ( Roth et al., 2018 b) (fine-scaled) 4.6011 ± 2.5651 0.7991 ± 0.0623 38.5917 ± 20.6583 

Zhu et al. ( Zhu et al., 2018 ) (sliding window) 1.8143 ± 1.0359 0.8297 ± 0.0617 24.5591 ± 17.4515 

Ours (random patch) 1.4237 ± 0.5916 0.8564 ± 0.0608 18.9862 ± 12.4169 

Table 5 

Average time cost per CT volume in the testing phase on different multi-organ seg- 

mentation models, where mean DSC is the average Dice score across 12 organs on 

BTCV testing data. 

Methods Mean DSC Testing Time (s) 

Roth et al. ( Roth et al., 2018 b) 0.7920 ±0.0652 304 

Zhou et al. ( Zhou et al., 2017 ) 0.8138 ±0.0644 312 

Zhu et al. ( Zhu et al., 2018 ) 0.8328 ±0.0631 294 

Ours ( N = 25) 0.8492 ±0.027 297 

Ours ( N = 50) 0.8564 ±0.0608 308 
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As shown in Table 4 , our method outperforms other patch se- 

ection strategies in terms of three evaluation metrics. We ob- 

erved that the fine-scaled and the sliding window method per- 

orm well when the first stage predictions are relatively good. But 

he fine-stage is sensitive to catastrophic failures predicted from 

oarse stage. The Zhu et al. (2018) method outperforms Roth et al. 

2018 b) mainly because it involves the operation of expanding box 

 n = 12). Our method achieved the improvement may be due to 

he smoothing effect introduced by random patches, it could save 

he catastrophic failures in the first stage. Fig. 5 shows visualization 

f sample results of our method compared to Roth et al. (2018 b).

e could observe that the fixed patches may be vulnerable to the 

rror field of view given by first-stage segmentation. 

.3.3. Comparison of time efficiencies with different methods 

We discuss the average time cost of our proposed method 

gainst other coarse-to-fine methods. The number of patches 

sed in the approach matters the overall testing time. Here, 

e choose n = 50 and n = 25 for discussing the concern of 

ccuracy-time trade-off. In experiments of Roth et al. (2018 b), 

hou et al. (2017) , Zhu et al. (2018) , we trained 12 models for

2 abdominal organs. The time cost evaluation is calculated af- 

er acquiring the final multi-organ segmentation output (includ- 

ng post-processing steps reported in each method). In implement- 

ng Zhu et al. (2018) , We choose the overlap size n = 6 and 12

s noted in the study. Experimental results are shown in Table 5 . 

hu et al. (2018) is the most efficient. Our method achieves compa- 

able time efficiency on N = 25. When N is larger, the performance 

mproves but the testing time also increases which is reasonable. 

e also observe that, in the testing phase of coarse-to-fine meth- 

ds, the time of loading models composes the most part. Overall, 
12 
oarse-to-fine methods take more than double seconds in the test- 

ng phase due to the loading of multiple models, and the automatic 

lgorithms take much less time than radiologists, which presents 

he clinical significance of the work. 

.3.4. Comparison with different medical image segmentation 

ethods 

We discussed different prevalent methods on medical image 

egmentation methods on the task of 12 abdominal organ seg- 

entation. We used the same data split configuration during ex- 

eriments. The results are shown in Table 6 . In comparison of 2D 

ethods, the basic model 2D UNet ( Ronneberger et al., 2015 ) and 

esNet ( He et al., 2016 ) suffer from worse DSC of small organs such

s adrenal glands and gallbladder. Mask R-CNN and DeepLab V3 

Chen et al., 2017) achieves higher performance because the lo- 

alization effect in the framework. In experimental results of 3D 

ethods. We observe low performance due to the severely down- 

ampled volume of CT images in 3D UNet ( Cicek et al., 2016 ),

-Net ( Milletari et al., 2016 ), and 3D FCN ( Chen et al., 2016 ).

hile nnUNet ( Isensee et al., 2018 ) benefits from the cascaded 

ramework that incorporates many ensembled predictions in the 

utputs. In comparison of 2D/3D hybrid networks, former meth- 

ds achieve comparable results, these studies utilized both 2D 

nd 3D context in a single network. Compare with above current 

tate-of-the-art medical image segmentation methods, coarse-to- 

ne frameworks achieve consistent higher DSC in the task, proba- 

ly due to the effective combination of low-resolution context and 

igh-resolution contexts. 

.3.5. Comparison with Multi-Atlas abdomen labeling challenge 

eaderboard 

The result of top teams on the leaderboard are listed in Table 7 .

ote that “try” team leads the top several rankings. It is also no- 

iceable that some latest work achieved high performance such 

s Zhou et al. (2019) that achieves mean DSC of 0.850 are not 

eported on the leaderboard. Compare with the leaderboard, our 

ethod outperforms other state-of-the-art methods, and achieve 

he highest mean DSC and the best Hausdorff distance perfor- 

ance in the standard competition. 
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Table 6 

Evaluation of different medical image segmentation methods on the BTCV testing dataset in multi-organ segmentation (12 organs). The evaluation is performed in terms of 

mean DSC and across all organs. 

2D methods 3D methodsVein Pan AG Hybrid and 2.5D methods 

2D UNet ( Ronneberger et al., 2015 ) Resnet 0.4935 3D UNet ( Cicek et al. 2016 ) 0.5381 H-denseUNet ( Li et al., 2018 ) 0.8172 

ResNet ( He et al., 2016 ) 0.5328 V –Net ( Milletari et al., 2016 ) 0.5284 AH 

–Net. ( Liu et al., 2018 ) 0.7947 

Mask R –CNN ( He et al., 2017 ) 0.7032 3D FCN ( Chen et al., 2016 ) 0.5406 UMCT (Xia et al. 2018) 0.7984 

DeepLab V3 ( Chen et al., 2018 ) 0.8015 nnUNet ( Isensee et al., 2018 ) 0.7934 OAN-RC ( Wang et al. 2019 ) 0.7885 

Ours ( N = 25) 0.8492 

Ours ( N = 50) 0.8564 

Table 7 

Leaderboard of Multi-Atlas abdomen labeling challenge (mean). 

Team Mean Surface 

DistanceVein Pan AG 

Average Dice Hausdorff

Distance 

Try-1 1.3522 0.84056 20.3802 

Try-2 1.4088 0.83626 20.0736 

Path 2.9252 0.777832 32.6082 

Ours 1.4237 0.85641 18.9862 
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. Conclusion and discussion 

In the work, we revisit the challenging whole volume based 

D abdominal segmentation. Due to limitations in low-resolution, 

igh-resolution and hierarchy approaches under restricted GPU 

emory, we explored the usage of randomly selected patches to 

he hierarchical method. First, we provided a 3D coarse multi- 

rgan segmentation using 3D U-Net. Then, we implemented the 

andom sampling to crop the context around target for remov- 

ng fixed pattern in patches. Next, we trained a high resolution 

ne-tuning network to compensate the shape and boundary struc- 

ure for patches. Last, we employed majority vote mechanism to 

use the full segmentation mask for CT scan. Moreover, we con- 

ucted exhaustive experiments on comparison of different strate- 

ies of patch-based methods, we demonstrated that translational 

ata augmentation and random sampling both provided boosted 

erformance in comparison to simply adding more patches in 3D 

NN. Additionally, we did large scale of experiments on effect of 

verage covered patches per voxel, which we conclude that more 

atches generously perform better than less number of patches. 

owever, majority vote works differently on variant structures, 

oo much patches only increase the computational time in some 

natomies. Besides, we deployed the trained models on two un- 

een datasets, we show that the method can be generalized to out- 

ier cases and pathological cohort. 

In this study, the proposed random patch network fusion en- 

bles the training to address the memory issue for high di- 

ensional 3D abdominal segmentation. In this study, 50 random 

atches are used for segmenting variant isotropic resolution at ~

0.8 × 0.8 × 2] for CT scans. It could be possible that GPU memory 

ould be large enough for housing entire abdomen CT in the fu- 

ure. However, the local-global feature trade-off games would still 

xist. Herein, the random patch network fusion technique could be 

 good choice for such scenarios. 

The major limitation of the proposed method is that the com- 

utational time would be linearly accumulated with the increasing 

umber of random patches. Besides, the majority vote algorithm is 

ot time efficient when applied to voxel-wise voting. Another dis- 

dvantage of majority vote is that when voxel is rarely covered by 

oters, the voxel is vulnerable to be miss-labeled. Therefore, it’s ap- 

ealing to investigate better statistical fusion algorithm with more 

fficient time and space complexity, while perverse stability for re- 

oving outlier labels. 
13 
Another limitation in this work is that the hierarchical label- 

ng framework still failed to mimic doctor’s process for identifying 

tructures. In the future, the hierarchical labeling could be inves- 

igated in clinical inspired approaches. Instead of simply transfer- 

ing low-resolution feature to high resolution model, we could also 

ass anatomies’ features to next hierarchy. For example, radiologist 

ould first find portal and splenic vein before identifying pancreas. 

f we could transfer the correlated feature as a prior in different 

evels’ hierarchy, the performance would be potentially improved. 

n addition, the previous work ( Ni et al., 2019 ) indicated a high-

imensional data often suffer redundancy (e.g., not every voxel in 

D volume is useful). Mining the boundary of organ versus back- 

rounds or other tissues could leads to a more efficient model. 

e posit that it is worth additional study of the patch selection 

trategy around boundaries. Future work could study the efficacy 

f boundary patches and inner voxel patches. 

In summary, the proposed random patch network fusion 

chieved consistent superior segmentation performance compare 

ith other labeling frameworks, since it led to a better balance 

etween performance and computational cost compared to other 

atch-based and multi-stage approaches. The balanced configura- 

ions are fulfilled by introducing 1) two-stage hierarchical levels, 2) 

andomly localized patches, 3) network label fusion. Our method 

resented positive result of 3D abdominal segmentation in variety 

f structures and datasets. We hope random patch network fusion 

ill be useful with other context tasks that involve hierarchical la- 

eling design. 
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