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Abstract. Pancreas CT segmentation offers promise at understanding the struc-
tural manifestation of metabolic conditions. To date, the medical primary record
of conditions that impact the pancreas is in the electronic health record (EHR)
in terms of diagnostic phenotype data (e.g., ICD-10 codes). We posit that similar
structural phenotypes could be revealed by studying subjects with similar med-
ical outcomes. Segmentation is mainly driven by imaging data, but this direct
approach may not consider differing canonical appearances with different under-
lying conditions (e.g., pancreatic atrophy versus pancreatic cysts). To this end,
we exploit clinical features from EHR data to complement image features for
enhancing the pancreas segmentation, especially in high-risk outcomes. Specifi-
cally, we propose, to the best of our knowledge, the first phenotype embedding
model for pancreas segmentation by predicting representatives that share similar
comorbidities. Such an embedding strategy can adaptively refine the segmenta-
tion outcome based on the discriminative contexts distilled from clinical features.
Experiments with 2000 patients’ EHR data and 300 CT images with the healthy
pancreas, type II diabetes, and pancreatitis subjects show that segmentation by
predictive phenotyping significantly improves performance over state-of-the-arts
(Dice score 0.775 to 0.791, p < 0.05, Wilcoxon signed-rank test). The pro-
posed method additionally achieves superior performance on two public testing
datasets, BTCV MICCALI Challenge 2015 and TCIA pancreas CT. Our approach
provides a promising direction of advancing segmentation with phenotype fea-
tures while without requiring EHR data as input during testing.
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1 Introduction

Patient care data, such as CT scans and electronic health records (EHR) with the pan-
creatic disease, are heterogeneous in nature. Disease progression and treatment deliv-
ery are associated with different care trajectories, which in turn lead to varying pan-
creas patterns. In anticipation of diabetes, patients are observed with atrophic pancreas
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Fig. 1. Representative images are predicted to associate with comorbidities and ICD-10 codes
(phenotype components) identified in each risk category. The red outlines show the pancreas
tissue can be different under phenotyping contexts. (1) is from a nominally healthy pancreas
group with potential lung infections; (2) is from type I diabetes and other chronic kidney disease
patients with atrophic pancreas; (3) is from other metabolic syndromes including type II diabetes;
(4) is from patients with weight loss and pancreatitis.

tissues [5], with progression noted in the patients’ medical history in terms of Inter-
national Classification of Diseases (ICD) codes. Current pancreas segmentation meth-
ods [15,18,24,25] are typically driven by imaging data, while phenotype covariates
[3,6,11,13,22] that indicate underlying patient conditions are not well considered. We
observe that different disease types present heterogeneous textures (Fig. 1), and thereby
hypothesize that identifying different pancreas patterns can extract the discriminative
contexts which can well benefit pancreas segmentation.

Data-driven phenotype clustering has been recently used to group patients sharing
close outcomes [1,4,8,9]. Combining imaging biomarkers, Virostko et al. [20] assessed
the pancreas size with type I diabetes patients. Tang et al. [19] showed the feasibility of
onset type II diabetes prediction using CT scans. However, to date, how to fully exploit
the EHR data for guiding medical image segmentation has been rarely studied. A naive
approach is to simply concatenate both image and EHR data as a two-channel input, and
then train a standard convolutional neural network for deriving the outcome. However,
this fusion strategy is not directly applicable for our task since 1) a patient can have
hundreds of phenotype categories; 2) the fusion strategy cannot account for patients’
observed outcomes (e.g., onset of comorbidities, chronic progression of metabolic syn-
drome); and 3) it requires EHR data as input during inference, which does not com-
monly exist for many real-world pancreas segmentation datasets (e.g., BTCV MICCAI
Challenge [7], TCIA pancreas CT [14]).

To address above challenges, we propose the first pancreas segmentation framework
to model both the pancreas imaging features and clinical features via predictive pheno-
typing. The rationale is that the larger scale of EHR data with (e.g., ICD-10 code) which
indicates phenotype subgroups can be potentially correlated to the different appearance
of the pancreas. Specifically, the proposed approach consists of an encoder, a segmenta-
tion decoder, and a predictor with sets of phenotypes candidates’ centroids. Our method
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is designed to meet the following requirements: 1) The subject image should be parti-
tioned into several subgroups sharing similar future outcomes; 2) The assigned discrete
representation should retain the patient phenotype context, and 3) The phenotype repre-
sentation is used as prior knowledge for predicting. Particularly, in our framework, the
encoder maps an image into a latent representation; the predictor assigns one or several
phenotype categories by taking the latent variable as input; the segmentation decoder
estimates the pixel-wise labels conditioned on the assigned centroid. To homogenize
future outcomes in each subgroup, we introduce a phenotyping objective given CT
images by regularizing Kullback-Leibler (KL) divergence between the learned latent
representation and the embedding centroid. Finally, the segmentation model estimates
the pancreas segmentation mask given encoding of the image and the risk embedding.

Our contribution is four-folds: we successfully (1) learn a phenotype embedding
between CT and EHR; (2) formulate a pancreas segmentation framework that benefits
from predicting phenotype subgroups; (3) demonstrate improved pancreas segmenta-
tion performance on healthy and disease patient cohorts; (4) design the embedding app-
roach without requiring EHR at the testing phase. The significance of the study is that
we use an experimental CT imaging-phenotyping approach for investing clinical under-
pinnings of pancreas segmentation. The phenotype embedded model enriches segmen-
tation contexts improving the characterization of heterogeneous disease and allows for
deeper consideration of patient phenotype in image-based learning.

2 Method

2.1 Problem Formulation

Let X € X and Y € ) be variables for input images and an output segmentation label.
C € C is the patient phenotype onset (i.e., one or a combination of future outcomes)
where X', ) and C are the image feature, label, and phenotype onset space, respectively.
Specifically, CT image X selection is censored from timestamp: date of diagnostic code
is later than date of scan at least 1 year. The input of C' is the sequence of covariate
admissions, the feature of one admission is a multi-hot vector containing the comorbidi-
ties or demographics: Clpyp = [M', M1, Ms, ..., Mc]. M’ is the set of demographic
values, M is the set of phenotype admissions constructed by binary vectors of aggre-
gate ICD-10 codes. In the training phase, we are given the dataset D = {x", y™, "},
consists of observations (x,y, ¢) for N subjects. In the testing phase, we assume the
dataset only comprising image volume {z"}V_, . The goal is first to identify a set of K
predictive phenotypes Z = {z1, 22, ..., 2k } lying in the latent space. Each phenotype
cluster is supposed comprising of homogeneous patients that can be represented by the
cluster centroid. This predictive phenotyping updates the encoder to suggest the context
to which cluster a patient belongs. Second, we design the segmentation model to esti-
mate the pixel-wise label given the encoding variable and the predictive phenotyping
distribution. Let Z be the random variable that lying in the phenotype onset latent space
and s be the image feature. The predictive phenotyping can be fulfilled by optimizing
the Kullback-Leibler (KL) divergence between distributions conditioned on the image:
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Fig. 2. Phenotype embedded segmentation architecture. The left diagram shows the embedding
network combining image features s, predictive phenotyping 2, pre-existing risk conditions z
lying in the latent space to be fed into the segmentation model. The predictor is trained for pre-
dicting phenotype-dependent feature maps and selecting “similar” cluster assignment, where the
phenotype information is not required as input in the testing phase. Right top: encoder for pro-
cessing phenotype covariates. Right bottom: the predictor follows the self-training scheme for
image feature. Here, SA denotes soft assignment for risk embeddings, R for ReL U, FC for fully
connected layers, and ® denotes concatenation.

p(2|s) and onset phenotypes p(z|c), respectively. Combining the aim of segmentation,
we establish our goal as following objective:

mini};nizeEyN(%y’c) [—log P(yl|s, 2k)] + KL (Zk|s || Zk|c). (1)

2.2 Loss Functions

Loss functions are designed to meet the objective in Eq. 1 and are proposed to iteratively
refine the predicted phenotyping from image features. Specifically, our model is trained
by matching image distribution to the target distribution defined by future outcomes.
To this end, we define the objective as KL divergence between an expectation and the
cluster assignment:

_ . K _ N
Ly (Zv Z) = ]E’ZNP(CB,C) [_ Zk:l zZy log Zk] s (2)
where Zj and 2, indicate the k-component of z, Z, respectively. Note that the KL diver-
gence loss reaches its minimum when two latent distributions are equivalent. Addition-

ally, the segmentation loss penalizes the predicted mask % and the ground truth label y
by DSC-loss:

_ 2 ; YiYi
LY, y) =Eyap(sz) |1 — % ) 3)

where the form follows [23] to prevent a model from background bias.
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2.3 Phenotype Embedding

To encourage homogeneous future outcomes in each phenotyping cluster, we employ
embedded mapping [21] as our initialization method. Given an initial estimate of the
non-linear mapping ¢’ and cluster centroid p. We adopt the self-supervision [12] train-
ing strategy that iteratively 1) optimizes soft-assignment between embedded points and
clustering centroids; 2) updates deep mapping and centroids. The soft-assignment block
in Fig. 2 follows [10] using Student’s ¢-distribution as a kernel to estimate between data
points and cluster centroid:

exp (14 ||} — i ||* /)
>, exp (14| ¢ —p; |7 /)

where o denotes the degrees of freedom of Student’s t-distribution (a« = 1 for all
experiments), exp is the exponential operation with power —(a + 1)/2 and ¢;; can
be interpreted as the probability of assigning sample ¢ to cluster k. More comparisons
of clustering benchmarks can be found in [8,9]. After initialization, the embedding
learning is iteratively updated during segmentation training.

ik = “)

3 Experiments

3.1 Dataset

The Abnormal Pancreas Segmentation Dataset. We have curated an abnormal pan-
creas dataset that contains 2000 adult patients (aged 18-50 years) with 14927 recorded
visits and de-identified longitudinal CT scans under IRB approval. Each patient is asso-
ciated with 101 covariates under radiologists’ query, including information on demo-
graphic and abdomen-related comorbidities that can potentially impact pancreas tis-
sues. CT images are acquired at least one year (range from 1.0 to 2.1 years) earlier than
diagnosis codes for each patient, to meet the requirements of the prognostic task with
predictive phenotyping. For the segmentation task, 300 patients’ CT images are anno-
tated and used for experiments. Each CT scanis 512 x 512 x Slices, where the number
of slices ranges from 72 to 121 under the body part regression process of [17] to acquire
relatively same abdomen region of interest (ROI). The slice thickness ranges from Imm
to 2.5mm.

BTCV MICCAI Challenge 2015. We used the MICCAI 2015 Multi-Atlas Abdomen
Labeling Challenge [7] as one of the external testing sets. The challenge dataset con-
tains 50 abdominal CT scans. For evaluating the testing phase of the proposed method,
the dataset does not include patient phenotype information. Each CT scan is manually
labeled with 13 structures including pancreas with a spatial resolution of ([0.54 ~ 0.54]
x [0.98 ~ 0.98] x [2.5 ~ 5.0] mm?).

TCIA Pancreas CT. We use the 82 abdominal contrast enhanced CT scans from
National Institutes of Health Clinical Center as the second external testing set. The
publicly available study cohort contains 17 kidney donor subjects, and 65 patients were
selected with no pancreatic cancer lesions and pathology. Each CT scan is in a resolu-
tion of 512 x 512 and slice thickness of [1.5 ~ 2.5] mm.
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3.2 Implementation Details

Follow prevailing pancreas segmentation baselines [18,24,25], we adopt the coarse-
to-fine strategy for 3D pancreas segmentation. The coarse stage takes a highly down-
sampled CT volume at an input dimension of 164 x 164 x 64. For the fine stage, we
cropped 64 x 64 x 64 sub-volumes constrained to be in the pancreas region of interest
(ROI). For experiments, 10% and 20% of subjects are randomly selected as validation
and testing sets with the in-house dataset. Note that, the two external datasets are only
used for testing, no subjects are used for the training procedure. We used 1) CT window
range of [-175, 275] HU; 2) scaled intensities of [0.0,1.0]; 3) training with Nvidia 2080
11GB GPU with Pytorch implementation; 4) Adam optimizer with momentum 0.9. The
Learning rate is initialized to 0.001 followed by a factor of 10 every 50 epochs decay.

Metrics. Segmentation performance is evaluated between ground truth and prediction
by Dice-Sorensen coefficient (DSC), Averaged Surface Distance (ASD), and symmetric
Hausdorff Distance (HD).

3.3 Comparison with State-of-the-Arts

We compare the proposed method with various state-of-the-art methods: 1) 3D-UNet
[2]; 2) hierarchical 3D FCN [16] (denoted as “3D FCN”); 3) the fixed-point model [24]
(denoted as “C2F Fixed-point”); 4) 3D ResDSN [25] (denoted as “C2F ResDSN”); and
5) the random patches model [18] (denoted as “C2F Random-patches”). Here “C2F”
denotes the coarse-to-fine training strategies [18,24,25].

3.4 Results

We compare our method against state-of-the-art approaches with respect to the clus-
ter number at 4 (Table 1). Our method significantly improves performance in terms of
DSC, ASD and HD, with p < 0.05 under Wilcoxon signed-rank test. Importantly, the
Hausdorff distance (HD) improvement shows that EHR information provided useful
context to reduce outliers. In Table 2, we further investigate the comparison experiment
results with external testing sets. The two public challenge data do not include patient
EHR, i.e., demographics, ICD codes. Our method implicitly predicts the future out-
comes from the image feature and fused to the segmentation task. The method achieves
a mean DSC of 0.757 on BTCV data, and 0.827 on TCIA pancreas CT. Predictive
phenotyping improves several outlier cases, showing less variance (Fig. 3). Qualitative
inspection confirms the numerical results (Fig. 4). First, we inspect the data of a patient
with potential lung infections and relatively normal pancreas tissue. In the second case,
the patient has type I diabetes, observing a degraded pancreas tissue. Importantly, the
improvement with respect to the degraded pancreas is larger than the healthy pancreas,
showing the predictive phenotyping can be informative for identifying variant patterns.

Ablative Study. Efficacy of the predictive phenotyping and network architecture In
Table 1, we compared the backbone model (row 5) and predictive phenotyping (row
6). The EHR improved performance on two datasets by 1.5%, significant Wilcoxon
signed-rank test, p<<0.001. For the diabetic patients, performance improvement gains
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Fig. 3. Testing performance on the in-house dataset. Left: Distribution (median and quartiles)
of DSC, the predictive phenotyping shows smaller variance and reduces the number of outliers
(DSC < 0.4). Right: The DSC (mean) comparison with varying K. The performance shows
higher improvement as K increases from 1 to 4, then becomes marginal after K = 4. * denotes
statistically significant under Wilcoxon signed-rank test (p < 0.05).

Table 1. Performance comparison on the abnormal pancreas segmentation dataset. C2F denotes
coarse-to-fine training. * denotes statistically significant against above method with Wilcoxon
signed-rank test.

Methods DSC |ASD |HD
3D-UNet (Cicek et al.) 0.697 |5.592 |27.154
3D FCN (Holger et al.) 0.724%* | 4.042* | 25.195*
C2F Fixed-point (Zhou et al.) 0.746* | 2.981* | 22.516*
C2F ResDSN (Zhu et al.) 0.767* | 2.105 |22.017
C2F Random-patches (Tang et al.) 0.775% | 1.976* | 20.591*

Predictive phenotyping (Ours, K = 4) | 0.791% | 1.697* | 19.482*

were larger. Predictive phenotyping with the EHR outperforms naive approach with
feature concatenation by a large margin, from 74.5% to 77.9% (Fig. 3). In Table 1 and
Fig. 3, we compared with pancreas segmentation state-of-the-art methods. Predictive
phenotyping significantly improved performance in terms of DSC, ASD and HD, with
p<0.05, Wilcoxon signed-rank test. Importantly, HD improvement shows that EHR
information provided useful context to reduce outliers. In Table 2, we further investigate
the comparison experiment results with external testing sets. For external validation, the
two public challenge data do not include patient EHR, i.e., demographics, ICD codes.
Our method implicitly predicts the future outcomes from the image feature and fused to
the segmentation task. The method achieves a mean DSC of 0.757 on BTCV data, and
0.827 on TCIA pancreas CT.

Importance of hyper-parameter K. We further evaluate the performance by varying the
number of clusters K from 1 to 10 on the in-house dataset. Figure 3 shows improved
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Fig. 4. Two representative cases. The top subject has potential lung infections and relative normal
pancreas tissue. The bottom case has type I diabetes with degraded pancreas tissue. The accu-
racy gain of the diabetes case is larger than the normal case, showing the method’s ability for
identifying variant morphological pancreas.

Table 2. External testing performance comparison on BTCV MICCAI Challenge 2015 and TCIA
pancreas (mean DSC) with our model trained on the internal data. Note that no subject from these
two datasets are used for training. C2F denotes coarse-to-fine training strategies. * for statistically
significant against above method with Wilcoxon signed-rank test.

Methods BTCV | TCIA
3D-UNet (Cicek et al.) 0.685 |0.770
3D FCN (Holger et al.) 0.709* | 0.776*
C2F Fixed-point (Zhou et al.) 0.726* | 0.797*
C2F ResDSN (Zhu et al.) 0.730* | 0.804
C2F Random-patches (Tang et al.) 0.742* | 0.813*

Predictive phenotyping (Ours, K = 4) | 0.757% | 0.822*

DSC as K increased, the DSC improves from 0.7814 to 0.7956 as K from 1 to 4. The
performance is observed no significant improvement after £ = 4 (p < 0.1, Wilcoxon
signed-rank test).

4 Discussion and Conclusion

Comparing Table 1 and Table 2, the proposed method shows higher improvement over
baseline methods if the cohort has more severe cases of abdominal diseases. Specifi-
cally, the performance improvement on the abnormal pancreas segmentation dataset in
terms of the average Dice is 1.6%, which is larger than that of the BTCV dataset (1.5%),
and the TCIA dataset (1.1%), respectively. We have also demonstrated two qualitative
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examples in Fig. 4, to show that our method can lead to more performance gain for the
atrophic pancreas than the normal pancreas. The larger improvement on diseased cohort
can be a potential advantage of the phenotype embedding. In addition to the major seg-
mentation objective, the case-specific feature projected to the phenotype embedding
space can be observed in Fig. 1. The comorbidities developed in the next two years
with 4 identified clusters, and listed ICD-10 codes are with most frequencies in each
grouped phenotype component. The first component shares the most cases with relative
normal pancreas, while the second, third and fourth indicate varying phenotype out-
comes of the atrophic pancreas, metabolic syndrome, and pancreas with inflammatory
fats, respectively. The number of phenotype components K is one of the most impor-
tant parameters in the study: increasing k can potentially impact the predictive embed-
ding with higher diversity representing data distribution. However, the interpretability
will decrease as it shares fewer similar data points. In the future, the interpretability
of the predicted phenotyping can be further evaluated with more clinically meaningful
investigations.

In this work, we introduce pancreas segmentation by predictive phenotyping, a
patient-oriented approach for understanding between EHR and CT data. The experi-
mental imaging-phenotyping approach is used for investigating the phenotype under-
pinnings of the pancreas. We demonstrate a predictive task to encourage image embed-
ding to the phenotyping cluster with similar patient outcomes. The EHR data is
designed as input at the training phase, and only images are required for inferencing
phenotyping context and segmentation at the test phase. Throughout experiments on
the in-house dataset and two public challenge datasets, we show that the method high-
lights a significant role over state-of-the-art segmentations. The integrated imaging-
phenotyping method could encourage solutions that better respect anatomical variabil-
ity, especially associated with disease progression or comorbidities. When EHR data is
available, the method can be applied for boosting performance.
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